
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2016

Secure hardware design against side-channel
attacks
Jungmin Park
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Park, Jungmin, "Secure hardware design against side-channel attacks" (2016). Graduate Theses and Dissertations. 15786.
https://lib.dr.iastate.edu/etd/15786

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15786&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15786&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15786&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F15786&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F15786&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15786&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=lib.dr.iastate.edu%2Fetd%2F15786&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/15786?utm_source=lib.dr.iastate.edu%2Fetd%2F15786&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Secure hardware design against side-channel attacks

by

Jungmin Park

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Engineering

Program of Study Committee:

Akhilesh Tyagi, Major Professor

Phillip Harrison Jones

Arun K. Somani

Diane T. Rover

Soma Chaudhuri

Iowa State University

Ames, Iowa

2016

Copyright c© Jungmin Park, 2016. All rights reserved.

www.manaraa.com

ii

DEDICATION

I would like to dedicate this thesis to my wife Mihyun and to my daughter Clare and to

my son Kevin and Kaden without whose support I would not have been able to complete this

work. I would also like to thank my friends and family for their loving guidance and financial

assistance during the writing of this work.

www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . ix

ACKNOWLEDGEMENTS . xii

ABSTRACT . xiii

CHAPTER 1. INTRODUCTION . 1

1.1 Contribution . 2

1.2 Summary . 5

CHAPTER 2. SIDE-CHANNEL ANALYSIS ATTACKS 7

2.1 Introduction . 7

2.2 Differential Power Analysis (DPA) Attack . 9

2.3 Profiling Attacks . 10

2.3.1 Näıve Bayes classifier . 10

2.3.2 Linear discriminant analysis . 11

2.3.3 Quadratic discriminant analysis . 12

2.3.4 Support vector machine . 12

2.4 Side-channel Based Disassembler of AVR microcontroller 16

2.4.1 Preliminary Experiments . 17

2.4.2 SVM . 20

CHAPTER 3. SECURITY METRICS . 23

3.1 Introduction . 23

3.2 Basic Definition and Lemma . 24

www.manaraa.com

iv

3.3 Power Model Using Renewal Process and Linear Regression 29

3.3.1 Renewal process . 29

3.3.2 Graph based analysis . 34

3.3.3 Linear regression . 37

3.4 SCA Security Metrics . 37

3.4.1 Kullback-Leibler divergence . 38

3.4.2 Mutual information . 42

3.5 Recognition Rate Using Maximum Likelihood Estimation 43

3.6 Experiment . 47

3.7 Conclusion . 49

CHAPTER 4. SECURE LOGIC STYLE . 51

4.1 Introduction . 51

4.2 Sense Amplifed Based Logic (SABL) . 52

4.3 Wave Dynamic Differential Logic (WDDL) . 54

4.4 t-private Private Circuit . 56

4.4.1 Ishai’s t-private circuit . 57

4.4.2 The modified t-private circuit . 59

4.5 Design of Secure logic style . 61

4.5.1 Design of SABL-NAND . 61

4.5.2 Design of WDDL . 63

4.5.3 Design of t-private logic cells . 64

4.5.4 Comparison of t-private NAND, SABL-NAND and WDDL-NAND . . . 65

4.5.5 SCA attacks of t-private logic circuit . 67

4.6 Conclusion . 68

CHAPTER 5. FPGA IMPLEMENTATION AND ASIC IMPLEMENTA-

TION . 69

5.1 Introduction . 69

5.2 FPGA Implementation . 70

www.manaraa.com

v

5.2.1 The tail recursive t-private circuit . 70

5.2.2 Mapping into k-LUTs with unlimited number of inputs 72

5.2.3 Mapping into k-LUTs with limited number of inputs 73

5.2.4 Implementation of t-private full adder 74

5.3 ASIC Implementation . 76

5.3.1 t-private Logic synthesis . 76

5.3.2 Design Flow . 77

5.3.3 Technology Library . 78

5.3.4 Verification of robustness . 80

5.4 Example : SBOX design . 84

5.5 Conclusion . 85

CHAPTER 6. t-PRIVATE SYSTEMS: UNIFIED PRIVATE MEMORIES

AND COMPUTATION . 87

6.1 Introduction . 87

6.2 Assumptions and Notation . 89

6.3 t-Private Memory: Schemas, Architecture, and Analysis 91

6.3.1 Original memory scheme without secrecy 91

6.3.2 t-private memory scheme . 92

6.3.3 t-private memory scheme using a random matrix T 92

6.3.4 Hybrid memory scheme . 94

6.3.5 Comparison . 95

6.4 New Approach . 95

6.5 New Computable And t-private Logic Schema And Gates 102

6.5.1 AND operation . 103

6.5.2 OR operation . 104

6.5.3 NOT operation . 105

6.5.4 The perfect secrecy . 105

6.6 Hardware Implementation . 107

6.7 Conclusion . 108

www.manaraa.com

vi

CHAPTER 7. CONCLUSION AND FUTURE WORK 110

7.1 Conclusion . 110

7.2 Future Work . 111

APPENDIX A. THE ADVANCED ENCRYPTION STANDARD [FIPS (2001)] 112

A.1 Algorithm . 112

A.1.1 SubBytes . 112

A.1.2 ShiftRows . 113

A.1.3 MixColumns . 114

A.1.4 AddRoundKey . 115

A.1.5 Key Schedule . 116

APPENDIX B. TOOL SCRIPTS . 117

B.1 Setup (FreePDK45) . 117

B.2 RTL Complier Tcl Script . 120

B.3 Encounter Script . 122

B.3.1 Configuration file (encounter.conf) . 122

B.3.2 tcl file (encounter.tcl) . 125

BIBLIOGRAPHY . 130

www.manaraa.com

vii

LIST OF TABLES

Table 1.1 Proposed Security Metrics and Solution at each Design Abstraction level 5

Table 2.1 Successful recognition rate(SR) of instructions according to classifiers . 20

Table 2.2 SR of instructions using LS-SVM and QDA classifiers 22

Table 4.1 Secure logic style . 52

Table 4.2 Comparison between t-private AND circuits 61

Table 4.3 Power consumption of SABL NAND (45 nm process) 62

Table 4.4 Power consumption of WDDL NAND (45 nm process) 64

Table 4.5 Power consumption of NAND2X1t1 (45 nm process) 67

Table 4.6 Power consumption of AND2X1t1 (45 nm process) 67

Table 4.7 Comparison of t-private NAND, SABL-NAND and WDDL-NAND . . 67

Table 4.8 Successful recognition rate of t-private circuits using LS-SVM and QDA

classifiers . 68

Table 5.1 Area, power and delay estimation of each t-private logic cell after logic

synthesis . 80

Table 5.2 Power consumption of NAND2X1t1 (45 nm process) 84

Table 5.3 Power consumption of AND2X1t1 (45 nm process) 84

Table 5.4 Power consumptions of NOR2X1t1 (45 nm process) 85

Table 5.5 Power consumption of OR2X1t1 (45 nm process) 85

Table 5.6 Power consumption of XOR2X1t1 (45 nm process) 86

Table 5.7 Power consumption of XNOR2X1t1 (45 nm process) 86

Table 5.8 Comparison of insecure and secure S-Box 86

www.manaraa.com

viii

Table 6.1 Variables used in this chapter . 90

Table 6.2 The storage overhead and the success probability of the 4 architectural

schemes . 95

Table 6.3 Number of Random Bits Used for an AND Gate and for an N -gate Circuit107

Table 6.4 Hardware Implementation on FPGA 107

Table A.1 ShiftRows: shift offsets for different block lengths 114

www.manaraa.com

ix

LIST OF FIGURES

Figure 2.1 Side-channel analysis attacks . 8

Figure 2.2 Separation of power traces of ADD and SUB 20

Figure 2.3 Kernal density estimation denpending on instructions at a specific sam-

pling point . 20

Figure 2.4 Hierarchical classification of registers and successful recognition rate . 21

Figure 2.5 LS-SVM vs QDA . 22

Figure 3.1 Renewal process of logic network . 29

Figure 3.2 Renewal process caused by triggering two inputs 33

Figure 3.3 Different transition counts according to logic gate and δ 33

Figure 3.4 Logic network graphs of basic logic gates 35

Figure 3.5 Reduction of Logic network graph . 36

Figure 3.6 The failure probability PrF : Overlapping coefficient of two normal

distributions . 43

Figure 3.7 Successful recognition rate according to α (a) when Pr[Tc1 > Tc2] >

Pr[Tc1 > Tc2] (b) when Pr[Tc1 > Tc3] > Pr[Tc1 > Tc2] 48

Figure 3.8 Scattered plots and linear regression (β̂ = 0.085, α̂ = 1.05) of 1000

random samples . 49

Figure 3.10 Correlation Power Analysis attack of AES SBOX (N = 1000) 50

Figure 3.11 Success probability according to the number of samples (N) 50

Figure 3.12 CPA attack of AES SBOX . 50

Figure 4.1 Schematic of a n-type SABL cell . 54

Figure 4.2 Schematic of a combinational WDDL cell 55

www.manaraa.com

x

Figure 4.3 The Ishai’s t-private circuits (t = 1). 59

Figure 4.4 An AND-XOR network with a random bit. 60

Figure 4.5 An expanded AND-XOR network. 60

Figure 4.6 Schematic of SABL-NAND gate . 62

Figure 4.8 Input a = 0, b = 0 . 63

Figure 4.9 Input a = 0, b = 1 . 63

Figure 4.10 Input a = 1, b = 0 . 63

Figure 4.11 Input a = 1, b = 1 . 63

Figure 4.12 Waveform of SABL NAND gate . 63

Figure 4.13 Schematic of WDDL-NAND gate . 64

Figure 4.15 Input a = 0, b = 0 . 65

Figure 4.16 Input a = 0, b = 1 . 65

Figure 4.17 Input a = 1, b = 0 . 65

Figure 4.18 Input a = 1, b = 1 . 65

Figure 4.19 Waveform of WDDL NAND gate . 65

Figure 4.20 Schematic of NAND2X1t1 . 66

Figure 4.21 Schematic of AND2X1t1 . 66

Figure 5.1 Transformation into LUT-based t-private circuit 73

Figure 5.2 Full adder cell schemetic . 74

Figure 5.3 (t = 1)-private full adder cell schematic 75

Figure 5.4 LUT costs of various t-private adders 75

Figure 5.5 Delay costs of various t-private adders 75

Figure 5.6 The design flow of the ASIC implementation 79

Figure 5.8 Schematic of AND2X1t1 . 82

Figure 5.9 Verilog description of AND2X1t1 . 82

Figure 5.10 Synthesized logic design . 82

Figure 5.11 Layout of AND2X1t1 . 82

Figure 5.12 The steps to create AND2X1t1 . 82

www.manaraa.com

xi

Figure 5.14 Peak currents of NAND2X1t1 . 83

Figure 5.15 Powers of NAND2X1t1 . 83

Figure 5.16 Distribution of powers and peak currents of NAND2X1t1 83

Figure 5.17 Layout of the secure AES S-Box . 84

Figure 6.2 The original memory scheme . 92

Figure 6.3 The t-private memory scheme . 92

Figure 6.4 The t-private memory scheme with a random matrix 92

Figure 6.5 The hybrid memory scheme . 92

Figure 6.6 4 architectural memory schemes . 92

Figure 6.8 The success probability . 96

Figure 6.9 The storage overhead . 96

Figure 6.10 Comparison between t-private scheme, t-private scheme with a random

matrix and the hybrid scheme when p = 0.9, k = 128, n = 10, ti = 10 . 96

Figure 6.11 t-Private: (Left) Encoding; (Right) Decoding 96

Figure 6.12 The proposed memory scheme . 100

Figure 6.13 The success probability according to m reused random bits when p =

0.9, t = 91 . 101

Figure 6.15 The success probability . 102

Figure 6.16 The number of random bits(t) when Psucc = 0.0078 102

Figure 6.17 Performance comparison between proposed scheme and t-private schemes102

Figure 6.18 An output of AND operation for the perfect secrecy 106

Figure A.1 SubByte () applies the S-box to each byte of the State 113

Figure A.2 ShiftRows () cyclically shifts the last three rows in the State 114

Figure A.3 MixColumns() operates on the State column-by-column 115

Figure A.4 AddRoundKey() XORs each column of the State with a word from the

key schedule . 115

www.manaraa.com

xii

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my thanks to those who helped me with

various aspects of conducting research and the writing of this thesis. First and foremost, Dr.

Akhilesh Tyagi for his guidance, patience and support throughout this research and the writing

of this thesis. His insights and words of encouragement have often inspired me and renewed

my hopes for completing my graduate education.

www.manaraa.com

xiii

ABSTRACT

Embedded systems such as smart card or IoT devices should be protected from side-channel

analysis (SCA) attacks. For the secure hardware implementation, SCA security metrics to

quantify robustness of the implementation at the abstraction level from the logic level to the

layout level against SCA attacks should be considered. In our design flow, the first security

test is executed at the logic level. If the implementation does not satisfy the threshold of the

SCA security metric based on Kullback-Leibler divergence, the module can be re-synthesized

with secure logic styles such as WDDL or t-private logic circuits. At the final security test, we

use the machine learning technique such as LDA, QDA, SVM and naive Bayes to check the

distinguishability of the side-channel leakage depending on inputs or outputs. These techniques

apply to an ASIC in characterizing the secret data leakage.

In this thesis, t-private logic circuits are implemented with the FreePDK45nm. The SCA

security metric as well as the delay and power consumption is characterized. All this charac-

terization data are stored in the standard liberty format(.lib) in order for general CAD tools

to use this file. The t-private logic package including the general digital logics can be exploited

for secure VLSI design. Also, various classifiers such as LDA, QDA, SVM or naive Bayes are

used to emulate real SCA environment. Based on this SCA simulator, the threshold of the

SCA security metric can be estimated and the security can be verified more accurately. The

secure logic cell package and SCA simulator support the methodology of the secure hardware

implementation.

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

Most of modern electrical devices are connected through the Internet. Private information

and secret data go back and forth between devices and servers. If significant and secret infor-

mation such as usernames, passwords and credit cards is controlled freely by adversaries, the

vast monetary demage is caused. Information security has been an extensive issue of many IT

field. For the secure communications and protection of information, cryptography has played a

significant role and modern cryptography such as AES and RSA cannot be broken theoretically.

In disregard of contribution of the modern cryptography, electrical devices can leak information

through side-channels or physical channels that are unintended. Common side-channel attacks

use power/current at Vdd pin [Kocher et al. (1999)] or electromagnetic radiation [Quisquater

and Samyde (2001)] to reveal a secret key. The power side-channel attacks are based on the

fact that the power consumption depends on the intermediate values which are correlated to

both some controlled inputs and some secret data embedded in the crypto-block.

Differential power analysis (DPA) of side-channel attacks has been shown to be especially

effective in finding the secret key by exploiting correlation between the power consumption

and the processed data [Kocher et al. (1999)]. Since this attack needs little knowledge of the

implementation of the cryptographic algorithm and can be performed with relatively cheap

equipment, it poses a major threat to cryptographic devices such as smart cards or embedded

systems. The hypothetical power consumption model (or leakage model) of an adversary based

on the intermediate value which depends on the key is related to the measured power consump-

tion if the key guess is correct. The attack can succeed or fail based on the selected leakage

model. Assuming that power consumption depends solely on the number of switched bits or the

number of 1’s in the intermediate value, Hamming distance model or Hamming weight model is

chosen respectively [Alioto et al. (2010), Mangard et al. (2007), Messerges et al. (2002)]. How-

www.manaraa.com

2

ever, in a real circuit based on ASICs, the assumption that power is a function of Hamming

distance or Hamming weight derived from the secret may not hold. Instead, model profiles

(or templetes) may be a better choice at a higher cost for more complex modeling effort. An

even more powerful adversary is the Bayesian side-channel adversary using the template that

selects the key guess which maximizes the probability that key guess is correct given the leakage

probability density (argmaxk∗Pr[k∗|l]) [Standaert et al. (2009)]. Side-channel attacks of the

Bayesian side-channel adversary should also be considered as major threats.

Many research efforts have targeted techniques to prevent side-channel attacks. The coun-

termeasures of DPA attacks are categorized into two groups: hiding and masking [Mangard

et al. (2007)]. The hiding countermeasures make the power consumption of cryptographic de-

vices independent of the intermediate values by making the power consumption random or

uniformly same for all data values. The masking countermeasures achieve the independence of

power consumption from the intermediate values by randomizing the intermediate values. This

also masks the logic behavior. But earlier countermeasures have been suitable for only specific

hardware implementation. For example, the method to randomize logic behavior should be

changed according to different hardware constraints such as the critical path, timing or power

consumption. The ad hoc approach causes the productivity of the secure design to be low.

Also, we do not know how much these countermeasures enforce DPA security. To the best of

our knowledge, no CAD tools that integrate such a DPA resistance computation and suggest

an appropriate hiding or masking countermeasure to improve a vulnerable design seem to exist.

New paradigm should be needed to satisfy both productivity and security.

1.1 Contribution

There are four main threads for the unified secure design methodology. First, security

against SCA attacks is included as a constrained resource along with delay and area for the

secure hardware implementation of the cryptographic system. The SCA security is quantified

using (1) the normalized variance metric (or the coefficient of variance) [Basel Halak (2013)],

(2) Kullback-Leibler divergence and [S. Kullback and R. A. Leibler (1951)] (3) the information

theoretic metric of the profiled power distribution [Mac et al. (2007)]. In our design flow, SCA

www.manaraa.com

3

vulnerability should be verified with these metrics at all implementation abstraction levels from

logic (or gate) to layout level. We estimate Kullback-Leibler divergence from the power distri-

bution gathered from the approximate and quick renewel process based logic level simulation.

The KL divergence is very related to vulnerability aginst side-channel attacks.

Once the SCA metric at the higher logic abstraction level is within safe bounds, the design

flow can enter the next abstraction level refinement. This abstraction refinement (as in logic

level to netlist level) introduces details that may develop new SCA vulnerabilities. Hence

an acceptable SCA metric value at higher abstraction layers still necessitates SCA metric

computation at lower levels. The mutual information metric is computed at the layout level

with multiple SPICE level circuit simulations. The acceptable thresholds for SCA security

metric are defined theoretically. If any combinational module has a value larger than the

threshold, it is flagged as a vulnerable module. Such a hierarchical filter not only results in

more efficient assessment of SCA vulnerabilities, the countermeasures can also be of variable

granularity to match the abstraction level (logic or netlist). Arguably, the corrective steps

taken at logic level are more effective even though the accuracy of the metric at that level is

lower.

The logic level filter uses the classical switching probability computation to estimate power

which depends on the secret data (key) or a correlated intermediate result. Even though simu-

lation based verification can be performed at the logic level, the probabilistic estimation method

for power is more efficient. Statistical Monte Carlo power estimation techniques [Najm (1994)]

are better suited than the BDD based power estimators [Sentovich et al. (1992), Monteiro

et al. (1997)] due to the need for model parametrization with secret key. The statistical power

estimation model is based on the fact that power consumption depends on the transition prob-

ability and capacitance of the output node of logic gates [Najm (1994)]. Since the transition

probability of the output node is influenced by input transition patterns, it can be modeled as a

normal distribution. The mean µ̂ and standard deviation σ̂ can be estimated through sampling

a large enough space of the input patterns and computing power over that input pattern. The

more distinguishable and identifiable power consumption is according to different inputs, the

more vulnerable is the SCA security. The SCA security metric can be computed as σ̂/µ̂. This

www.manaraa.com

4

analytical method can be applied to combinational circuits. Note that the SCA security metric

for multiple implementations of the same behavior can vary even though the logic level boolean

equations specifying the arithmetic function are the same. The normalized variance metric can

be used to compare SCA vulnerability of multiple implementations but it does not provide a

safety threshold to flag a vulnerable implementation. Instead, SCA metric using KL-divergence

divergence plays a critical role to distinguish vulnerable implementations. If the SCA security

metric of any computing block has a large value or is above a threshold, it should be reduced

significantly, possibly to zero, by the proposed resynthesis at the logic level.

Once the logic level design has an acceptable variance metric, It can be synthesized into

transistor level netlist. The information theoretic metric of mutual information can be com-

puted both at the transistor netlist level and physical (or layout) level. Mutual information

(I(K;L)) of the secret data (K) and the corresponding leakage (L) as the third SCA security

metric quantifies amount of information about the secret data in the leakage channel (power).

If the mutual information indicates that a significant fraction of n secret key bits are leaking

through L (power), the design needs to be reinforced.

The second thread consists of a design schema to reduce the SCA vulnerability at the

netlist level. This is done through the so called technology mapping or cell binding phase.

SCA secure versions of the t-private [Ishai et al. (2003)] cells as well as the sense amplified

based logic (SABL) and wave differential dynamic logic (WDDL) for AND, OR, NAND, NOR,

NXOR and XOR logic gates are to be provided in the technology library. These t-private cell

primitives are based on Ishai’s t-private circuits which are robust against the t-th order side-

channel (or probing) attacks [Ishai et al. (2003)]. They can be verified as SCA secure using our

SCA security metrics at all design abstraction levels. The parts of the cryptographic system

determined vulnerable by the KL divergence based SCA security metric at the logic level can

be synthesized with these t-private cells, SABL or WDDL cells.

Third, a t-private logic synthesis method is proposed in order to prevent side-channel

attacks at the logic (or gate) level. After logic synthesis, vulnerable sub-logic can be determined

through SCA security metrics. It should be synthesized into the following reduced area version

of t-private circuits. The boolean functions of insecure parts are represented by the exclusive-

www.manaraa.com

5

Table 1.1: Proposed Security Metrics and Solution at each Design Abstraction level

security metrics leakage estimation method solution

logic level KL divergence renewal process t-private logic synthesis

transistor level all simulation balance matching

physical(layout) level all simulation balance matching

OR sum-of-products (ESOP) and then the products are masked with random bits. The masked

products are replaced with t-private circuits. Exclusive-ORs are also replaced with t-private

XOR circuits. We call this t-private logic synthesis. Since t-private XOR and NXOR primitives

have significantly smaller area and better delay than the original t-private circuits, the ESOP

representation may have both area and delay advantages. Table 1.1 summarizes the proposed

security metrics and side-channel leakage estimation methods.

Finally, the fourth thread targets secure memory modules. Memories also leak information.

Private data including cryptographic keys are committed to the memory. This data-at-rest is

open to physical access based attacks. These attacks slice the silicon until individual transistors

are exposed by a Focused Ion Beam (FIB). An electron microscope is used to examine the

silicon. Halderman et al. [Halderman et al. (2008)] proposed ”cold-boot attack” which is a

method to measure a significant fraction of data stored in a powered-off memory (e.g. DRAM)

by cooling the chip to around −50◦C at which temperature the data will persist for several

minutes with minimal error. Ishai’s [Ishai et al. (2003)] t-private coding can be used for memory

as well. Recently, Valamehr et al. [Valamehr et al. (2012)] developed more general and more

efficient masking methods to prevent such memory attacks. However, their more efficient

memory coding methods require the private data-at-rest such as a key to be decoded before

it can be used in computation. We propose coding methods that are as efficient as Valamehr

et al. [Valamehr et al. (2012)] for memory coding, but at the same time can use the encoded

data-at-rest for computing in flight as is. We call such coding systems t-private systems.

1.2 Summary

The thesis is orgaized as the following chapters. Chapter 1 gives an introduction to the

background and contribution of the thesis.

www.manaraa.com

6

Chapter 2 presents the overview of side-channel analysis attacks. As an example, side-channel

based AVR diassembler is proposed.

Security metrics are proposed in Chapter 3. This chapter is based on the pulished papers in

VLSID 2016 [Park and Tyagi (2016)] and ISVLSI 2014 [Park and Tyagi (2014b)].

Chapter 4 presents secure logic styles such as t-private logic circuits, SABL and WDDL. These

secure logic cells are implemeted at the various abstract level (from the logic gate level to the

layout level). Also, the SCA vulnerablility of these secure logic style is verified by simulating

SCA attacks.

Chapter 5 presents the methodology of SCA secure FPGA and ASIC implementation. This

chapter is based on the published paper in HOST 2012 [Park and Tyagi (2012)]

Chapter 6 presents t-private memory and systems. Probing-resistant memories are focuced on.

This chapter is based on the published paper in SPACE 2014 [Park and Tyagi (2014a)]

In the final chapter 7, the thesis is concluded with a discussion on future work.

www.manaraa.com

7

CHAPTER 2. SIDE-CHANNEL ANALYSIS ATTACKS

2.1 Introduction

Common side-channel analysis attacks use a current path at Vdd or gnd pin or electromag-

netic radiation of a specific location in the chip to reveal a secret key. Power based side-channel

attacks are based on the observation of general CMOS switching characteristic that the power

consumption depends on input signals. Simple power analysis (SPA) attack [Kocher et al.

(1999)] is a technique to directly interpret power consumption measurements collected during

cryptographic operations. SPA attack requires detailed knowledge about the implementation of

the cryptographic algorithm executed by the device under attack. A skilled adversary monitors

only one trace or a few traces of power consumption during cryptographic operations and then

reveals the secret key. This scenario is not practical since it is very difficult to obtain detailed

information of the modern complex hardware implementation such as effective capacitance and

resistance of internal nodes.

But profiling makes the scenario practical. In the profiling phase, an adversary can estimate

probability distribution of power consumption given any secret key by recoding many power

traces at the specific times when cryptographic operations with intermediate values related to

the secret key are performing. The more power traces are exploited for the profiling, the more

accurately the probability distributions are estimated. The correct secret key can be extracted

with various classifiers (or distinguishers) based on the estimated probability distributions and

a maximum-likelihood (ML) decision rule. Machine learning techniques such as linear discrim-

inant analysis (LDA), quadratic discriminant analysis (QDA), logistic regression classifier or

support vector machine (SVM) can be utilized.

As a non-profiling attack, differential power analysis (DPA) attack has been shown to

www.manaraa.com

8

Figure 2.1: Side-channel analysis attacks

be especially effective in finding the secret key by exploiting correlation between estimated

power consumption and the processed data. Since this attack needs little knowledge of the

implementation of the cryptographic algorithm and can be performed with relatively cheap

equipment, it is known to be a major threat to cryptographic devices such as smart cards

or embedded systems. The hypothetical power consumption model (or leakage model) of an

adversary based on the intermediate value which depends on the key is related to the measured

power consumption if the key guess is correct. The adversary’s leakage model and the classifier

affect success of failure of attack. Fig. 2.1 shows the diagram of the side-channel analysis

attacks.

The chapter is organized as follows. The next section presents the general method of

differential power analysis attack. Section 2.3 describes profiling attacks with various machine

learning classifiers such as LDA, QDA, näıve Bayes classifier and SVM. As an example of SCA

application, SCA based disassembler of AVR is proposed in Section 2.4.

www.manaraa.com

9

2.2 Differential Power Analysis (DPA) Attack

There exists a general attack strategy that is used by all DPA attacks. The first step of the

DPA attack is to determine the intermediate value of the cryptographic algorithm executed by

the device under attack, which is denoted by vi = f(di, k
∗), where di is the ith plain text or

cipher text and k∗ is the secret key.

The second step is to measure the power consumption of the cryptographic device while it

encrypts or decrypts D different data blocks including the seleted function at the first step.

We denote the power trace as ~ti = (ti,1, ti,2, . . . , ti,t∗ , . . . , ti,P)T corresponding to data block

di, where P denotes the length of the trace and ti,t∗ is the power consumption when the

selected function at the first step is performed. An adversary measures a trace for each of

the D data blocks, and hence, the traces can be written as matrix T of size D × P : T =

(~t1, ~t2, . . . , ~tt∗ , . . . , ~tP), where ~tj for j = 1, . . . , P is a column vector of size D × 1.

The third step is to calculate a hypothetical intermediate value for all possible k : vi,j =

f(di, kj) for i = 1, . . . , D and j = 1, . . . ,K.

The forth step is to map the hypothetical intermediate values to the hypothetical power

consumption values: hi,j = g(vi,j) = g(f(di, kj)) for i = 1, . . . , D and j = 1, . . . ,K. The most

commonly used power consumption models are the Hamming-distance and the Hamming-weight

model. The D×K matrix H is made at this step : H = (~h1, . . . , ~hK), where ~hi for i = 1, . . . ,K

is a vector of size D × 1.

The fifth step is to compare the hypothetical power consumption model with the measured

power traces. In order to measure the linear relationships between two vectors ~hi and ~tj for

i = 1, . . . ,K and j = 1, . . . , T , the correlation coefficient is calculated :

ri,j =

∑D
d=1(hd,i − hi)(td,j − tj)√∑D

i=1(hd,i − hi)2
∑D

i=1(td,j − tj)2

where hi and tj denote the mean values of the vector ~hi and ~tj , respectively. If rk∗,t∗ of the

correct key k∗ and the specific time t∗ has the distinct peak value, the DPA attack is successful.

www.manaraa.com

10

2.3 Profiling Attacks

Assuming that the adversary performs a Bayesian attack, s/he first carries out many experi-

ments to measure power consumption in order to model the conditional probability distribution

of side-channel power given all possible keys k for k = 1, . . . ,K, denoted by Pr[~l|k]. We call

this process the profiling step. After the profiling step, the posterior probability that the secret

key is equal to k given any measured power (~lj) can be computed using Bayes’ theorem :

Pr[k|~lj] =
Pr[~lj |k]Pr[k]∑K
k=1 Pr[~lj |k]Pr[k]

.

Using the maximum-likelihood estimation, the best guess key is the key k that leads to the

maximum probability:

k = arg maxk∈K

D∏
j=1

Pr[k|~lj]. (2.1)

If the prior probability Pr[k] for k = 1, . . . ,K is uniformly distributed, Eq. (2.1) is equal

to the following:

k = arg maxk∈K

D∏
j=1

Pr[~lj |k] (2.2)

The likelihood probability Pr[~lj |k] at Eq. (2.2) determines the kind of the classifier. The

successful classifier selects the correct key : k = k∗.

2.3.1 Näıve Bayes classifier

Assuming that ~lj ∈ Rt with ~lj = (lj,1, . . . , lj,t)
T where 1 ≤ t ≤ P and each lj,i is conditionally

independent of every other lj,m for i 6= m given the key k, the classifier is defined as

k = arg maxk∈K =

D∏
j=1

t∏
i=1

f̂(lj,i|k), (2.3)

where f̂(lj,i|k) is a kernel density estimator. The kernel density estimator is written as

f̂(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
.

www.manaraa.com

11

A kernel is a non-negative real-valued integrable function satisfying the following two require-

ments: ∫ ∞
−∞

K(u)du = 1

K(−u) = K(u) for all values of u.

If the Gaussian kernel is used,

K(u) =
1√
2π

exp

(
−u

2

2

)
.

A possible estimated bandwidth for kernel density estimation [Wasserman (2006)] is given by

ĥ =

[
8
√
π
∫
K2(u)du

3(
∫
u2K(u)du)2

]1/5

min(S, Srob)n
−1/5,

where S =
√

1
n−1

∑n
i=1(Xi − X̄)2 and Srod =

median{|Xi−F−1
n (1

2
)|}

0.6745 , F−1
n (1

2) denotes the median

of the sample. The classifier of Eq. (2.3) is called näıve Bayes classifier.

2.3.2 Linear discriminant analysis

If the likelihood probability Pr[~lj |k] for k = 1, . . . ,K is the multivariate Gaussian density

fuction with the mean vector ~µk and common covariance matrix Σ of size t× t, that is,

Pr[~lj |k] =
1

(2π)t/2|Σ|1/2
exp

(
−1

2
(~lj − ~µk)

TΣ−1(~lj − ~µk)

)
,

then the classifier is the following:

k = arg maxk∈K

D∏
j=1

log Pr[~lj |k]

= arg maxk∈K

D∏
j=1

log
1

(2π)t/2|Σ|1/2
exp

(
−1

2
(~lj − ~µk)

TΣ−1(~lj − ~µk)

)

= arg maxk∈K

D∏
j=1

[
~lj
T
Σ−1 ~µk −

1

2
~µk
TΣ−1 ~µk

]

This classifier is the linear discriminant analysis(LDA) classifier.

www.manaraa.com

12

2.3.3 Quadratic discriminant analysis

The quadratic discriminant analysis (QDA) classifier results from the assumption that each

class is drawn from a multivarite Gaussian distribution with a class specific mean row vector

~µk and class specific covariance matrix Σk. The QDA classifier is the following:

k = arg maxk∈K

D∏
j=1

log Pr[~lj |k]

= arg maxk∈K

D∏
j=1

log
1

(2π)t/2|Σk|1/2
exp

(
−1

2
(~lj − ~µk)

TΣ−1
k (~lj − ~µk)

)

= arg maxk∈K

D∏
j=1

[
−1

2
log |Σk| −

1

2
~lj
T
Σ−1
k
~lj + ~lj

T
Σ−1
k ~µk −

1

2
~µk
TΣ−1

k ~µk

]
.

2.3.4 Support vector machine

Support vector machines have been introduced by Vapnik [Vapnik (1995)]. It became more

important and popular in recent years when extensions to general nonlinear SVMs have been

made [Vapnik (1995), Vapnik (1998)].

2.3.4.1 Linear SVM classifier : separable case

Consider a given training set {~xi′, yi}Ni=1, input patterns ~xj ∈ Rd and output patterns yi ∈ R

with class labels yi ∈ {+1,−1}. We define a unique separting hyperplane. We would like to

find ~w and b such that 
~wT ~xi + b ≥ +1 if yi = +1

~wT ~xi + b ≤ −1 if yi = −1

which can be rewritten as

yi(~w
T ~xi + b) ≥ 1, i = 1, . . . , N. (2.4)

The optimal searching hyperplane is the one that maximize the distance between the hyperplane

and the nearest points on either side. The distance of ~xi to the discriminant is

|~wT ~xi + b|
‖~w‖

=
yi(~w

T ~xi + b)

‖~w‖

www.manaraa.com

13

,which we would like to be at least some value ρ which is called margin:

yi(~w
T ~xi + b)

‖~w‖
≥ ρ

2
∀i

By scaling ~w such that mini |~wT ~xi + b| = 1, the problem is equal to the following optimazation

problem :

min
~w

1

2
~wT ~w subject to yi(~w

T ~xi + b) ≥ 1 for i = 1, . . . , N.

This is a standard quadratic optimization problem, whose complexity depends on d, the di-

mensionality of the training data. We can convert the optimization problem to a form whose

complexity depends on N , the number of training instances, and not on d. The advantage of

this new formulation is that it will allow us to rewrite the basic functions in terms of kernel

functions [Alpaydin (2010)].

The Lagrangian for this problem is

Lp(~w, b; ~α) =
1

2
~wT ~w −

N∑
i=1

αi{yi(~wT ~xi + b)− 1}

with Lagrange multipliers αi ≥ 0 for i = 1, . . . , N . Since the main term is convex and the

linear constraints are also convex, this is a convex quadratic optimization problem. Therefore,

we can equivalently solve the dual problem, making use of the Karush-Kuhn-Tucher condition.

The dual is to maximize Lp with respect to ~α, subject to the constraints that the gradient of

Lp with respect to ~w and b are 0 and also that αi ≥ 0. The solution is given by the saddle

point of the Lagrangian

max
~α

min
~w,b
L(~w, b; ~α),


∂Lp
∂ ~w

= 0→ ~w =

N∑
i=1

αiyi ~xi

∂Lp
∂b

= 0→
N∑
i=1

αiyi = 0.

The resulting classifier is the following:

y(~x) = sign

(
N∑
i=1

αiyi ~xi
T~x+ b

)
. (2.5)

www.manaraa.com

14

Note that this problem is solved in ~α, not in ~w. Once we solve for ~α, most elements of ~α

vanish with αi = 0 and only a few elements have greater than 0. The data related to nonzero

αi are called support vectors and these data points contribute to the sum in the classifier model

at Eq. (2.5).

2.3.4.2 Linear SVM classifier : non-separable case

If the two classes are not linearly separable such that there is no hyperplane to perfectly

separate the data, the hyperplane that incurs the least error should be searched. The inequality

of Eq. (2.4) is modified into the following:

yi(~w
T ~xi + b) ≥ 1− ξi for i = 1, . . . , N

with slack variables ξi > 0 such that the original inequalities can be violated for certain points

if needed. The optimization problem becomes

min
~w,~ξ

T (~w, ~ξ) = min
~w,~ξ

1

2
~wT ~w + c

N∑
i=1

ξi

subject to 
yi(~w

T ~xi + b) ≥ 1− ξi for i = 1, . . . , N

ξi ≥ 0 for i = 1, . . . , N.

The Lagrangian for this problem is

Lp(~w, b, ~ξ; ~α, ~ν) = T (~w, ~ξ)−
N∑
i=1

αi{yi(~wT ~xi + b)− 1 + ξi} −
N∑
i=1

νiξi

and Lagrange multipliers αi ≥ 0, νi ≥ 0 for i = 1, . . . , N . The solution is given by the saddle

point of Lagrangian :

max
~α,~ν

min
~w,b,~ξ
L(~w, b, ~ξ; ~α, ~ν),



∂Lp
∂ ~w

= 0→ ~w =

N∑
i=1

αiyi ~xi

∂Lp
∂b

= 0→
N∑
i=1

αiyi = 0

∂Lp
∂ξi

= 0→ 0 ≤ αi ≤ c, i = 1, . . . , N.

www.manaraa.com

15

2.3.4.3 Nonlinear SVM classifiers

If the problem is nonlinear, we can map the problem to a high dimensional feature space

(Rnh) by doing a nonlinear transformation using suitably chosen basic function. After the

nonlinear mapping ϕ(~x) : Rn → Rnh , a construction of the linear separating hyperplane is done

in this high dimensional feature space. The optimization problem becomes

min
~w,~ξ

T (~w, ~ξ) = min
~w,~ξ

1

2
~wT ~w + c

N∑
i=1

ξi

subject to 
yi(~w

Tϕ(~xi) + b) ≥ 1− ξi for i = 1, . . . , N

ξi ≥ 0 for i = 1, . . . , N.

One constructs the Lagrangian :

Lp(~w, b, ~ξ; ~α, ~ν) = T (~w, ~ξ)−
N∑
i=1

αi{yi(~wTϕ(~xi) + b)− 1 + ξi} −
N∑
i=1

νiξi

and Lagrange multipliers αi ≥ 0, νi ≥ 0 for i = 1, . . . , N . The solution is given by the saddle

point of Lagrangian :

max
~α,~ν

min
~w,b,~ξ
L(~w, b, ~ξ; ~α, ~ν),



∂Lp
∂ ~w

= 0→ ~w =

N∑
i=1

αiyiϕ(~xi)

∂Lp
∂b

= 0→
N∑
i=1

αiyi = 0

∂Lp
∂ξi

= 0→ 0 ≤ αi ≤ c, i = 1, . . . , N.

We make use of the Mercer condition by choosing a kernel

K(~xk, ~xl) = ϕ(~xk)
Tϕ(~xl).

By applying this theorem one can avoid computations in the huge dimensional feature spce.

The nonlinear SVM classifier takes the form

y(~x) = sign

[
N∑
i=1

αiyiK(~x, ~xi) + b

]

= sign

[
#SV∑
i=1

αiyiK(~x, ~xi) + b

]

www.manaraa.com

16

with #SV denotes the number of support vectors.

Several kernels K(·, ·) are the followings:

K(~x, ~xi) = ~xi
T~x (linear kernel)

K(~x, ~xi) = (~xi
T~x+ 1)d (polynomial kernel of degree d)

K(~x, ~xi) = exp(−‖~x− ~xi‖2/σ2) (RBF kernel)

K(~x, ~xi) = tanh(κ~xi
T~x+ θ) (MLP kernel).

2.4 Side-channel Based Disassembler of AVR microcontroller

The main focus of the side-channel based disassembler is to extract assembly level code

along with the control flow graph from the side-channel leakage. The significant difference

between side-channel analysis attacks and side-channel based disassembler is the number of

required power sample traces to succeed assuming that both use profiled templates. Side-

channel analysis attacks for secret data leakage have more flexibility in the number of required

sample traces because the adversary can control the plaintext input of the target device. But

side-channel disassembler does not have similar controllability of the target device. It should

recognize a power or EM trace of each executed instruction. In other words, side-channel dis-

assembler should estimate which instruction is executing, which register is used, or what value

is processed with only one sample. This makes side-channel disassembler a more challenging

problem. It requires more advanced estimation techniques.

There exist many challenging problems in complete disassembly. Identification of destina-

tion register, Rd and source register, Rs for register transfer instructions or data for load or

store instructions is difficult. For a more complete monitoring of programs, many variables

such as register names, register data, memory address and values for load/store instructions

should be estimated. Moreover, recent embedded microcontrollers such as ARM Cortex-M or

Cortex-A series have more complex architectures with deeper pipeline stages and larger in-

www.manaraa.com

17

struction sets. Their system clock frequency also approaches a few hundred MHz or about

1GHz. It becomes more difficult to disassemble programs on the recent embedded devices.

Lastly, the acquisition methods of power or EM emanations with oscilloscopes would be sig-

nificantly stretched because of higher system clock frequencies of the target devices (of the

order of 1GHz). High sampling rate oscilloscopes (over 5GS/s) are needed to collect power or

EM leakage information generated at 1GHz frequency to prevent loss of fidelity. For profiling,

multiple data samples are needed, which may be a few billion (232) in case of 32-bit instruc-

tion sets. This can make the profiling process significantly time consuming. Fast bandwidth

between the oscilloscope and the desktop or laptop to store the sampled data is also required.

The oscilloscopes with high sampling, high vertical resolution and fast bandwidth are fairly

expensive (over $ 20 K).

In this section, we propose power side-channel based disassembler of AVR using hierarchi-

cal quadratic discriminant analysis (QDA) classifier and SVM classifier. Even though AVR

microcontroller is not state-of-the-art devices, we believe that our method can be a starting

point to disassemble recent embedded microcontroller. Our disassembler includes estimating

which registers are used and what value the registers have as well as which instructions are

executed. Also, we compare QDA classifier with other classifiers such as näıve Bayes classifier,

LDA classifier and the SVM classifier.

2.4.1 Preliminary Experiments

We conducted preliminary experiments to check if similar style instructions of AVR AT-

mega328p µC can be disassembled through power analysis. We considered 6 data transfer

instructions (add, sub, and, mov, or, eor) from the source register (Rs16 ∼ Rs25) to the

destination register (Rd16 ∼ Rs25). The goal of this experiment is to identify which instruction

is executed and which Rd and Rd are exploited.

The AVR µC has 2 pipeline stages and with a clock frequency of 16 MHz. Tektronix

DPO-4032 oscilloscope is used to sample the power pin at 1.25GS/s, 20MHz bandwidth, 1000

sample points and 128 average mode. Using this oscilloscope, the voltage of the shunt resistor

www.manaraa.com

18

between the GND pin and ground is measured. Each power trace is measured with the following

program segment template: sbi, 5 nops, targeted profiled instruction, 5 nops. The

sbi instruction is executed for the trigger signal. In order to remove power consumption of sbi

instruction and electrical noise, we compute the difference between each power trace and the

reference power traces of sbi and 10 nops sequence. For profiling, 3000 power traces per each

instruction with randomly selected Rs and Rd (the values of the Rs and Rd also are randomly

distributed) are sampled. We also measures 3000 power traces per each Rd with randomly

selected instruction and Rs and 3000 power traces per each Rs with randomly selected instruc-

tion and Rd. These training data will be used for the classification. There exist 3 different class

groups. The first class group represents the instruction : Cint = {cadd, csub, cand, cmov, cor, ceor}.

The second class group and third class group represents the source register and the destination

register, respectively : CRd = {crd16, . . . , crd25}, CRs = {crs16, . . . , crs25}.

Before the training, the measured traces should be preprocessed in order to remove noise and

to make different classes be more distinguishable. The continuous wavelet transform (CWT)

to extract distinct features among all classes in both the frequency and the time domain is

used. Principal components (time and frequency) are extracted from the wavelet transform of

the collected traces. Only the principal time and frequency region features are kept, and all

the other time and frequency domain signals are zeroed. An inverse CWT of the shaped time

and frequency signal contains only the principal features in the time domain. The next step

is the feature selection to look for which any specific times are significant. The total number

of sampling point per each inverse-CWT power trace is 160. Assuming that each sampling

point has normal distribution with the mean µi and the variance σ2
i for i = 1, . . . , 160, the

probability distribution of each class has the multivariate(160-dimensional) normal distribution.

The computation complexity is very expensive and not practical. Thus, the dimensionality

reduction or feature selection is required.

The Kullback-Leibler divergence is useful metric for the feature selection. The more the KL

divergence between two random variable, the more distinguishable two random variables. The

specific sampling points should have large KL-divergence value. Also, the specific sampling

points does not have dependency (or collinearity). To satisfy two conditions, the specific

www.manaraa.com

19

sampling points have locally maximum value. As a result, 160 dimensionality can reduce to

about 10. Fig. 2.2 shows the preprocessing for the separation of power traces of and and sub.

The scatter plots of the raw power traces are overlapped. After CWT analysis and the feature

selection, the scatter plots does not have the overlapping region.

3000 power traces with the specific sample points per each class are used for the training

depending on the classifier. Linear discriminant analysis (LDA), quadratic discriminant analy-

sis(QDA) and näıve Bayes method are executed. Each classifier has different assumption. LDA

assumes that the distribution of each class has multivariate normal distribution with the same

covariance matrix (Σ). QDA has more flexibility than LDA since they assumes that the distri-

bution of each class has multivariate normal distribution with the different covariance matrix

(Σi 6= Σj ∀i 6= j). Näıve Bayes classifier assumes that the probability distribution of each

specific sampling point of each class can be various distribution independently. The marginal

probability distribution of power traces at a specific sampling point resembles the normal dis-

tribution and the marginal probability distribution of each class has different variance. Fig.

2.3 shows the kernel density estimation of each instruction at a specific sampling point. Since

the characteristic of power traces satisfies the assumption of QDA, the QDA classifier has the

best performance among three classifiers (LDA, QDA, näıve Bayes classifier). The successful

recognition rates (SR) of instructions (add, sub, and, mov, or, eor) according to classifiers

are shown in Table 2.1.

The registers from Rd16 (or Rs 16) to Rd25 (or Rs25) can be grouped into 4 classes depend-

ing on the Hamming weight of the binary address of the register. The Hamming weight of the

register address is very related to the power consumption during the fetch and decoding of the

instruction since the address of registers occupies 10-bit length of the 16-bit instruction code.

The classification of registers (Rd, Rs) can be executed hierarchically. The Hamming weight

of the address of the register is identified and then the address of the register in the Hamming

weight class is recognized. Fig. 2.4 shows the hierarchical classification of the register (Rd,

Rs) using the QDA classifer and the successful recognition rate of the Hamming weight class

and the address. The successful recognition rates of the Hamming weight of Rd and Rs are 80%

and 69.6%, respectively. The address of the register Rd and Rs with the 2-Hamming weight is

www.manaraa.com

20

Figure 2.2: Separation of power traces of ADD and SUB

Figure 2.3: Kernal density estimation denpending on instructions at a specific sampling point

recognized at the rate of 77.8% and 67.5%, respectively. The address of the register Rd and Rs

with the 3-Hamming weight is recognized at the rate of 83% and 73.6%, respectively. Fig. 2.4

shows the hierarchical classification of registers Rd and Rs and successful recognition rates.

2.4.2 SVM

LS-SVM(Least Squares Support Vector Machine) [Leuven (2011)] is used to classify in-

structions. Fig. 2.5 shows the successful recognition rates of LS-SVM and QDA to classify

measured power traces into two classes. LS-SVM mostly overcomes QDA classifier in terms of

Table 2.1: Successful recognition rate(SR) of instructions according to classifiers

Classifier SR

LDA 37 %

QDA 70.1 %

näıve Bayes 37.1 %

www.manaraa.com

21

Figure 2.4: Hierarchical classification of registers and successful recognition rate

the successful recognition rate. In case of C = {cexor, cmov}, LS-SVM results in 8.5 % better

performance than QDA classifier. Table 2.2 shows successful recognition rates of LS-SVM and

QDA classifier depending on various classes. LS-SVM increases 12 % successful recognition

rates of 6 instructions (add, sub, and, mov, or, eor) compared with QDA result.

www.manaraa.com

22

Figure 2.5: LS-SVM vs QDA

Table 2.2: SR of instructions using LS-SVM and QDA classifiers

LS-SVM QDA

add vs and 88.97 % 89.26 %

add vs sub 89.88 % 89.58 %

add vs exor 81.46 % 85.46 %

add vs or 93.10 % 89.21 %

add vs mov 89.28 % 87.13 %

sub vs mov 95.17 % 94.05 %

sub vs or 91.80 % 93.28 %

sub vs and 94.67 % 95.25 %

sub vs exor 94.13 % 91.57 %

exor vs or 91.5 % 88.12 %

exor vs mov 92.92 % 84.42 %

exor vs and 84.92 % 86.25 %

or vs mov 89.63 % 92.4 %

or vs and 91.85 % 90.37 %

mov vs and 88.76 % 86.92 %

add vs and vs exor 86.83 % 78.56 %

add vs and vs mov 82.73 % 79.93 %

add vs and vs or 83.64 % 82.91 %

add vs and vs sub 85.83 % 85.16 %

add vs exor vs mov 85.23 % 77. 31 %

add vs exor vs or 82.57 % 79. 82 %

add vs exor vs sub 86.01 % 81.6 %

add vs and vs exor vs mov vs or vs sub 82 % 70.1 %

www.manaraa.com

23

CHAPTER 3. SECURITY METRICS

3.1 Introduction

In this chapter, we focus on SCA metrics to flag insecure combinational modules within a

complete cryptographic system. We assume that the adversary is powerful enough to estimate

power consumption accurately to account for the number of switching transitions including

glitches in a complete cryptographic system. From the designer point of view, this assumption

bases security on an all powerful adversary. Even though simulation based profiling can be

performed at the logic level, it should be avoided due to efficiency. The number of input

vectors of the simulation increases exponentially in the number of input bits, denoted by n.

The power consumption can be estimated more efficiently by the Monte Carlo probabilistic

methods. The Monte Carlo probabilistic power estimation model is based on the fact that

power consumption depends on the transition probability and capacitance of the output node

of logic gates [Najm (1994)]. But the probabilistic power estimation model does not consider

glitches caused by the gate delay.

First, we propose a new stochastic power estimation method using renewal process and

linear regression which includes the dynamic power caused by the glitching phenomenon. This

method is used at the logic level design for efficient power profiling. Given any input transitions

of the combinational circuit, the normal power distribution with the mean µ and variance σ2

can be obtained.

Second, security metrics to capture SCA vulnerability with the power estimation are defined

and computed. The CAD for design flow includes the SCA metric estimation and optimization

just as area and delay estimation and optimization. The SCA security is quantified using

(1) the normalized variance metric (or the coefficient of variance) [Basel Halak (2013)], (2)

www.manaraa.com

24

Kullback-Leibler divergence and [S. Kullback and R. A. Leibler (1951)] (3) the information

theoretic metric of the profiled power distribution. In our design flow, SCA vulnerability should

be verified with these metrics at all implementation abstraction levels from logic (or gate) to

layout level. We estimate Kullback-Leibler divergence from the power distribution gathered

from the approximate and quick renewal process based logic level simulation. Once the SCA

metric at the higher logic abstraction level is within safe bounds, the design flow can enter the

next abstraction level refinement. This abstraction refinement (as in logic level to netlist level)

introduces details that may develop new SCA vulnerabilities. Hence an acceptable SCA metric

value at higher abstraction layers still necessitates SCA metric computation at lower levels. The

mutual information metric is computed at the layout level with multiple SPICE level circuit

simulations. The acceptable thresholds for SCA security metric are defined theoretically. If

any combinational module has a value larger than the threshold, it is flagged as a vulnerable

module. The vulnerable modules should be transformed into a secure module. One of the

methods to accomplish this is to use a secure logic design style such as t-private circuits [Ishai

et al. (2003)] or masked dual-rail dynamic logic [Mangard (2005)].

The chapter is organized as follows. The next section presents the basic definitions and

lemmas for power estimation. We develop the power leakage model using renewal process and

linear regression in Section 3.3. The SCA security metrics are presented in Section 3.4. The

recognition rate using maximum likelihood estimation is defined in Section 3.5. The recognition

rate is very related to KL divergence. Experimental results are presented in Section 3.6. Finally,

Section 3.7 concludes the chapter.

3.2 Basic Definition and Lemma

In this section, the basic definitions and lemmas for stochastic power estimation of combi-

national circuits are presented.

Definition 1 (Boolean difference). [Mohyuddin et al. (2008)] The partial Boolean differ-

ence of f(x0, x1, . . . , xn−1) with respect to one variable or a subset of its variables is defined

www.manaraa.com

25

as:

∂f

∂xi
= fxi ⊕ fx′i

∂f

∂(xi1xi2 · · ·xik)
= fxi1xi2 ···xik ⊕ fx′i1x′i2 ···x′ik .

where fxi = f(x0, x1, . . . , 1, . . . , xn−1) and fx′i = f(x0, x1, . . . , 0, . . . , xn−1). The total Boolean

difference of f(x0, x1, . . . , xi, . . . , xn−1) with respect to a k-variable subset of its inputs is

defined as:

df

d(xi1xi2 · · ·xik)
=

2k−1−1∑
j=0

∂f

∂~x

∣∣∣∣
mj

(mj +m2k−j−1)

where mj’s are defined as follows:

m0 = x′i1x
′
i2 · · ·x

′
in−1

x′ik

m1 = x′i1x
′
i2 · · ·x

′
in−1

xik

...

m2k−1 = xi1xi2 · · ·xin−1xik ,

and

∂f

∂~x

∣∣∣∣
mj

=
∂f

∂(x∗i1x
∗
i2
· · ·x∗ik)

where mj = x∗i1x
∗
i2 · · ·x

∗
ik

(x∗i = xi or x′i).

Definition 2 (Observability). The observability of xi is the probability that xi is observable

at the output y = f(x0, x1, · · · , xi, · · · , xn−1) when the polarity of xi is changed. Using the

boolean difference with respect to xi,

Oby(xi) = Pr

[
∂f

∂xi

]
= Pr[fxi ⊕ fx′i].

In general the kth order observability of a subset of inputs (xi1xi2 · · ·xik) at the output y =

f(x0, x1, · · · , xn−1) is defined as:

Oby(xi1 , xi2 , · · · , xik) = Pr

[
df

d(xi1xi2 · · ·xik)

]
.

The conditional observability given x∗j1 , ..., x
∗
jm

is defined as:

Oby(xi1 , xi2 , · · · , xik |x
∗
j1 , ..., x

∗
jm) = Pr

[
dfx∗j1 ,...,x

∗
jm

d(xi1xi2 · · ·xik)

]
.

www.manaraa.com

26

Definition 3 (Logic network graph). [Micheli (1994)] The logic network graph G(V,E,W (E))

is a directed acyclic weighted graph with the vertex set V which is in one-to-one correspondence

with the primary inputs, local functions and primary outputs and the weight set W (E) =

{w((vi, vj))|(vi, vj) ∈ E}. We denote a path P from the vertex v1 to another vertex vn by an

alternating sequence of distinct vertices and edges such as the following equation :

P = {v1, (v1, v2), v2, (v2, v3), . . . , vn}.

Definition 4 (Reconvergent node). Two distinct directed paths are reconvergent if they start

at a common vertex (va) and terminate at another common vertex (vb). The vertex va is called

a reconvergent fanout and the vertex vb is called a reconvergent node.

Definition 5 (Effective capacitance). We define the effective capacitance Cy(xi) as the average

of total switched capacitances of all logic gates on the path from the input xi to the output y when

the input xi is switched. We use the lumped-C model which describes the effective capacitance

Cy(xi) as a lumped capacitance containing the intrinsic and the extrinsic capacitance of all logic

gates.

The effective capacitance of a CMOS logic gate depends on the diffusion capacitance Cd of

the logic, the wiring capacitance Cw and the gate capacitance Cg of the following logic gates

[Weste and Harris (2010)]. The effective capacitance of a logic gate u is given by the following

equation:

C(u) = Cd(u) + Cw +
n∑
i=1

Cg(ui) (3.1)

where n is the number of logic gates ui driven by the logic gate u and Cg(ui) is the gate capac-

itance of each of the following logic gates. These capacitances Cd, Cw and Cg depend on the

physical properties of the process technology.

Assumption 1. For technology independent estimates at the logic level, we assume that

the mobility of the nMOS transistors is two times the mobility of the pMOS transistor and

that the transistor widths are chosen to achieve balanced rising and falling transition delays

www.manaraa.com

27

[Weste and Harris (2010)]. We also assume that a unit transistor has the same gate capacitance

C as the source/drain diffusion capacitance (C = Cg = Cd) and Cw is equal to zero.

Lemma 1. The power consumption Py(xi) of logic gates on the path from the input xi to the

output y caused by switching the input xi depends on the output observability of the input xi and

the effective capacitance Cy(xi). We define the dynamic power, Py(xi), caused by switching the

input xi as

Py(xi) = 0.5V 2
DDf ·Oby(xi)Cy(xi)

where f is the frequency and VDD is the supply voltage.

Lemma 2. Given a logic network graph G(V,E,W (E)), where the weight set W = {w((vi, vj))|

w((vi, vj)) = Obj(i), (vi, vj) ∈ E}, the path observability Obian(a0) of the input a0 at the output

an on the path Pi = {va0 , (va0 , va1), va1 , . . . , van} is given by the following equation:

Obian(a0) =
n−1∏
i=0

Obai+1(ai) =
∏
∀e∈Pi

w(e). (3.2)

Generally, there exist various paths since the path Pi may have the reconvergent fanout rf

and reconvergent node rn. The observability of the input rf at the output rn is approximately

equal to the sum of observability along all paths:

Obrn(rf) =

m−1∑
i=0

Obirn(rf) (3.3)

where m is the number of paths.

Proof. By the Shannon expansion, the output y0 is expressed by the following equations :

y0 = f(a0, · · ·) = a0fa0 + a′0fa′0 . (3.4)

Assuming f is decomposed into a1 = f1(a0, . . .) and y0 = f r(a1, . . .),

y0 = a1f
r
a1 + a′1f

r
a′1

= {a0f
1
a0 + a′0f

1
a′0
}f ra1 + {a0f

1
a0 + a′0f

1
a′0
}′f ra′1 . (3.5)

www.manaraa.com

28

At (3.4), using (3.5) fa0 and fa′0 are the following equations :

fa0 = f(1, . . .)

= f1
a0f

r
a1 + {f1

a0}
′f ra′1

.

fa′0 = f(0, . . .)

= f1
a′0
f ra1 + {f1

a′0
}′f ra′1 .

The boolean difference of f(a0, . . .) with respect to the variable a0 is

∂f

∂a0
= fa0 ⊕ fa′0

= [f1
a0f

r
a1 + {f1

a0}
′f ra′1

]⊕ [f1
a′0
f ra1 + {f1

a′0
}′f ra′1]

= [{f1
a0}
′ + {f ra1}

′][f1
a0 + {f ra′1}

′][f1
a′0
f ra1 + {f1

a′0
}′f ra′1]+

[f1
a0f

r
a1 + {f1

a0}
′f ra′1

][{f1
a′0
}′ + {f ra1}

′][f1
a′0

+ {f ra′1}
′]

= {f1
a0}
′f1
a′0
f ra1{f

r
a′1
}′ + f1

a0{f
1
a′0
}′{f ra1}

′f ra′1
+

f1
a0{f

1
a′0
}′f ra1{f

r
a′1
}′ + {f1

a0}
′f1
a′0
{f ra1}

′f ra′1

= (f1
a0 ⊕ f

1
a′0

)(f ra1 ⊕ f
r
a′1

)

=
∂f1

∂a0

∂f r

∂a1
.

Similarly, the logic function, f r is decomposed into n− 1 logic functions, ai = f i(ai−1, . . .)

for i = 2, . . . , n. The boolean difference of f r(a1, . . .) with respect to the variable a1 is

∂f r

∂a1
=
∂f2

∂a1
· · · ∂f

n

∂an−1
.

Thus,

∂f

∂a0
=
∂f1

∂a0

∂f2

∂a1
· · · ∂f

n

∂an−1
.

The path observability of the primary input a0 at the primary output y0 on the path Pi is

Obiy0(a0) = Pr

[
∂f

∂a0

]
= Pr

[
∂f1

∂a0

]
Pr

[
∂f2

∂a1

]
· · ·Pr

[
∂fn

∂an−1

]
=

n−1∏
i=0

Obai+1(ai).

www.manaraa.com

29

Figure 3.1: Renewal process of logic network

Lemma 3. We let Cai(ai−1) for i = 1, . . . , n be the effective capacitance of each local logic

function, ai = f i(ai−1, . . .) for i = 1, . . . , n. The effective capacitance Cy0(a0) of the complete

logic function y0 = f(a0, . . .) due to the primary input a0 is given by the following equation:

Cy0(a0) =
1

Oby0(a0)

n−1∑
i=0

Obai+1(a0)Cai+1(ai)

=
1

Oby0(a0)

n−1∑
i=0

 i∏
j=0

Obaj+1(aj)

Cai+1(ai). (3.6)

If y0 and a0 are a reconvergent node and fanout pair, respectively and there exists m paths

between the two nodes,

Cy0(a0) =
1

Oby0(a0)

m−1∑
j=0

nj−1∑
i=0

Ob
aji+1

(a0)C
aji+1

(aji) (3.7)

where aji is the node in the jth path.

3.3 Power Model Using Renewal Process and Linear Regression

3.3.1 Renewal process

We propose new power estimation model using the renewal process and linear regression

in this section. We can model the switching behavior of logic circuits as a renewal process.

www.manaraa.com

30

The transition or switching of each logic gate is regarded as a renewal. When switching events

propagate through connected logic networks, the input transition events cause renewals at

output nodes sequentially with renewal intervals between successive logic gates corresponding to

the gate delays. The expected number of renewals includes normal transitions and unintended

glitches due to variable delays and can be used for accurate power estimation. The accuracy

and computational complexity of power estimation depends on the probability density function

of the renewal intervals, Xi.

There exists a path P from the vertex v1 to another vertex vn in the logic network

G(V,E,W (E)). Note that the i− 1st logic gate should be triggered for switching the ith logic

gate. Some logic gates are triggered in sequential order from switching the primary input x at

time t0 with the probability p0. The logic gates v1, v2, · · · , vn are triggered at time t1, t2, . . . , tn

with the probability p1, p2, . . . , pn, respectively. The renewal process [Nelson (1995)] can be

used for modeling the behavior of the logic network. The transition points ti are renewal points.

Let Xn be the renewal interval between successive renewal points, tn− tn−1. Fig. 3.1 describes

the renewal process of the logic network.

We define S0 = 0 and

Sn
def
= X1 +X2 + · · ·+Xn, n ≥ 1,

and let

N(t)
def
= max{n : Sn ≤ t}.

Recall that Sn is the time of the nth renewal and N(t) is the number of renewals that occur

within the interval (0, t]. We let Fn be the distribution of the sum of n independent random

variables distributed as Xi. Fn is defined as the nth-fold convolution of FXi , that is,

Fn(x)
def
= FX1 ∗ FX2 ∗ · · · ∗ FXn

and let fn(x) be the corresponding density function. We are concerned with properties of N(t).

www.manaraa.com

31

Using Fn(x), the density of N(t) can be derived as

Pr[N(t) = n] = Pr[N(t) ≤ n]− Pr[N(t) ≤ n− 1]

= Pr[Sn+1 > t]− Pr[Sn > t]

= Fn(t)− Fn+1(t).

The expected number of renewals during a given period of time, denoted by R(t) can be

obtained as follows:

R(t) =

n∑
i=1

iPr[N(t) = i] =

n∑
i=1

i(Fi(t)− Fi+1(t)) =

n∑
i=1

Fi(t) (3.8)

Note that Xi can be modeled as the time for transition event from the switching event

Xi−1 or it can be modeled as time to the clock edge. The first scenario models Xi as a random

variable with probability pi as a normal distribution with the mean µi and the variance σ2
i .

The second scenario captures T − ti−1 with probability 1 − pi, where T is the period of clock

cycle. This means that if the logic node vi transitions with probability pi, Xi is a random value

which includes the logic gate delay and wire delay. Otherwise, Xi is the remaining time to the

period of the clock cycle.

We define the probability density of Xi as the followings:

fXi(t) = (1− pi)δ (t− (T − ti−1)) + pin(t;µi, σi)

where n(t;µi, σi) = 1
σi
√

2π
e
− 1

2

(
t−µi
σi

)2
, δ(t) is the impulse function or Dirac delta function,

pi = Obvi(vi−1) and T is the period of the clock cycle. The ith-fold convolution Fi(t) at t = T

is the followings:

Fi(T) =

 i∏
j=1

pj

∫ T

t=0
n

t; i∑
j=1

µj ,

√√√√ i∑
j=1

σ2
j

 ∼=
 i∏
j=1

pj


The expected number of switched logic gates during a clock cycle R(T) is the followings by Eq.

(3.8):

R(T) =
n∑
i=1

Fi(T) =
n∑
i=1

i∏
j=1

pj =
n∑
i=1

i∏
j=1

Obvi(vi−1).

R(T) means the expected number of switched signals on the path P by triggering a input

during a clock cycle. If multiple inputs are triggered, there exist multiple paths from the inputs

www.manaraa.com

32

to outputs. Let P1 and P2 be the path from the input a and b to the output y, respectively.

If two paths share a common path from the node vi to the output, the number of transition

caused by triggering the input a and b varies according to the node vi and the arrival time at

the node vi. If the node vi is a XOR gate and the difference between two arrival time at the

node vi, denoted by δ is greater than 0, then the glitch at the output of the XOR gate occurs

and propagates to the output through the shared path. Otherwise, there exist no transitions

from the node vi. The probability that δ is equal to 0, denoted by pδ=0 can be obtained as

follows :

pδ=0 = Pr[Sn1 = Sn2 = t] = n

t; n1∑
j=1

µ1j ,

√√√√ n1∑
j=1

σ2
1j


= n

t; n2∑
j=1

µ2j ,

√√√√ n2∑
j=1

σ2
2j

 ,

where Sn1 and Sn2 are the time of the n1th and n2th renewal of each path from each input to

the node vi. The expected number of transitions R(T) is equal to

R1(t) +R2(t) + 2(1− pδ=0)R3(T) =

n1∑
i=1

i∏
j=1

Obv1,i(v1,i−1) +

n2∑
i=1

i∏
j=1

Obv2,i(v2,i−1) + 2(1− pδ=0)

n3∑
i=1

i∏
j=1

Obv3,i(v3,i−1)

where R1(t) and R2(t) are the expected number of transitions on each path from each input

to the node vi. R3(T) is the expected number of transitions when only one switching event

is injected due to one of the incoming paths. Note that the term (1 − pδ=0) captures the

probability that glitching occurs.

Similarly, if the node vi is a gate other than XOR, such as NAND or NOR, the term

2pδ=0R3(T) is changed into 1
2pδ=0R3(T) + (1− pδ=0)R3(T). Fig. 3.3 shows the reason why the

term should be changed based on the truth table of different gates.

www.manaraa.com

33

Figure 3.2: Renewal process caused by triggering two inputs

Figure 3.3: Different transition counts according to logic gate and δ

www.manaraa.com

34

3.3.2 Graph based analysis

The logic network graph of the combinational logic circuit will be simplified through node

collapsing using the properties in Eq. (3.2), (3.3), (3.6) and (3.7). This method is called graph

based analysis. Let the corresponding logic network graph to be G(V,E,W (E),W (V)) with the

edge weight set W (E) = {w((vi, vj))|w((vi, vj)) = Obj(i), (vi, vj) ∈ E} and the vertex weight

vector set W (V) = {~w(v)|~w(v) = [wi(v)], wi(v) = C(v) for i = 0, . . . , Indegree(v)− 1, v ∈ V }.

For example, given a logic network graph of y = g(a, b) = a · b, there exist four vertices

va, vb, vg, vy and three edges (va, vg), (vb, vg), (vg, vy). The components of W are the following:

w((va, vg)) = Obg(a) = Pr[fa ⊕ fa′] = Pr[b]

w((vb, vg)) = Obg(b) = Pr[fb ⊕ fb′] = Pr[a]

w((vg, vy)) = 1

~w(vg) = [w0(vg) w1(vg)] = [C(g) C(g)].

The power consumption caused by switching an input is given by the following equations:

Py(a) = α · w((va, vg)) · w((vg, vy)) · w0(vg) = αPr[b]C(g)

Py(b) = α · w((vb, vg)) · w((vg, vy)) · w1(vg) = αPr[a]C(g)

where α is 0.5V 2
DDf . Other logic gates such as OR, NAND, NOR or XOR also correspond

to a logic network graph. Fig. 3.4 shows these logic network graphs of basic logic gates. The

logic network graph G(V,E,W (E),W (V)) can be simplified or reduced through node and edge

reduction primitives by using Lemma 2 and Lemma 3.

Node Reduction: Two gate vertices vg1 and vg2 connected by an edge (vg1, vg2) can

be united into a vertex vg1g2 with Indegree(vg1g2) = Indegree(vg1) + Indegree(vg2) − 1 and

Outdegree(vg1g2) = Outdegree(vg1) + Outdegree(vg2) − 1 after removing the edge (vg1, vg2).

The weights of indegree edges of vg1 are changed to w((vg1 , vg2)) times their weights given by Eq.

(3.2). The weights of incoming edges of vg2 are not changed. The weight vectors of the united

vertex vg1g2 are changed into ~w(vg1g2) = [wi(vg1g2)] where wi(vg1g2) = c(g1)/w((vg1 , vg2))+c(g2)

for i = 0, . . . , Indegree(vg1)−1 and wi(vg1g2) = c(g2) for i = Indegree(vg1), . . . , Indegree(vg1)+

Indegree(vg2)−2 by Eq. (3.6). This vertex reduction can be repeated until only the pairs of the

www.manaraa.com

35

Figure 3.4: Logic network graphs of basic logic gates

reconvergent fanout vrf and node vrn with two or more edges between them remain, along with

the primary input and output nodes. Two or more edges of the pairs of the reconvergent fanout

and node can be reduced by the following edge reduction. Also, the pairs of the reconvergent

fanout and node with a reduced edge can be reduced by this node reduction except that the

weight of the vertex vrf,rn is derived by Eq. (3.7). Note that each node reduction step reduces

the node count by at least 1.

Edge Reduction: The edges between the reconvergent fanout vrf and node vrn are reduced

into a single edge with the weight Obrn(rf) given by Eq. (3.3). Finally, the simplified network

graph G′(V,E,W (E),W (V)) has only a single logic (function) node, the primary input nodes,

and the primary output node. Fig. 3.5 shows the vertex reduction in the logic network graph.

Algorithm 2 presents the reduction method to reduce a logic graph into a singleton graph in

order to compute the power consumption of the combinational circuit trivially.

If all effective capacitances in the logic network are set to 1, the expected number of switched

signals on each path is equal to the weight of the corresponding edge in the simplified network.

www.manaraa.com

36

Figure 3.5: Reduction of Logic network graph

www.manaraa.com

37

Algorithm 1 Reduction of G(V,E,W (E),W (V))

Input : A logic network graph, G(V,E,W (E),W (V))

V = {Vpi, Vpo, Vg|pi: privary inputs, po : privary outputs, g : local functions}
W (E) = {w(vi,vj)|w(vi,vj) = Obj(i), (vi, vj) ∈ E}
W (V) = {~w(v)|~w(v) = [wi(v)], wi(v) = C(v)

for ∀ i = 0, . . . , Indegree(v)− 1, v ∈ V }
Output : A simplified network graph,

G′(V,E,W (E),W (V))

for k = 1→ |Vg| − 1 do

Select two connected vertices vgi, vgj for ∀ vgi, vgj ∈ Vg
if vgi = Reconvergent fanout and vgj = Reconvergent node with two more edges then

Reduction edge (vgi, vgj), Reduction vertex (vgi, vgj)

else

Reduction vertex (vgi, vgj)

end if

end for

3.3.3 Linear regression

The number of transitions of signals in the hardware implementation is highly correlated to

the dynamic power consumption [Mangard et al. (2005)]. In order to estimate power consump-

tion using the number of transitions, linear regression is used. Let X and Y be the random

variables of the number of transitions and power consumption, respectively. The estimator of

Y , denoted by Ŷ is the followings:

Ŷ = α̂+ β̂X, β̂ =
Sxy
Sxx

, α̂ = Y − β̂X (3.9)

where Sxy =
∑n

i=1(xi−X)(yi− Y), Sxx =
∑n

i=1(xi−X)2 and X and Y are the sample means

of X and Y , respectively. Thus, the probability density function of the power can be refered

to n(x;µŶ , σŶ), where µŶ = Ŷ and σŶ =
√
β̂σ2

X by a few number of samples. This leakage

distribution will be used to induce power based SCA security metrics in the following section.

3.4 SCA Security Metrics

Power based SCA security metrics were defined [Basel Halak (2013)] in order to measure the

effectiveness (inverse of robustness or resistance) of side-channel attacks on the target boolean

www.manaraa.com

38

function : ~v = f(~k, ~x), where ~k is a part of the secret data and ~x is related to the plaintext or

ciphertext. The more distinguishable and identifiable power consumption is to different inputs,

the more vulnerable is the SCA security of the target boolean function. In order to quantify

SCA effectiveness, the normalized standard deviation was used in [Basel Halak (2013)]. The

normalized standard deviation is defined by the following equation :

σ̂

µ̂
=
n
√∑n

i=1(yi − y)2

√
n− 1

∑n
i=1 yi

where yi is a random sample of power consumption given any input pattern from the sample

space with the mean µ and the variance σ2, y is the sample mean of yi. As n goes to infinity,

the normalized standard deviation is equal to σ/µ.

Note that if we allow constant current components in the circuit, this metric is flawed. Given

a circuit C0 with mean µ0 and standard deviation σ0, the metric is altered from (σ0/µ0) to

(σ0/(µ0+µ1)) when another isolated, disconnected circuit C1 with constant current (σ1 = 0 and

mean µ1) is added. This indicates a quantitative reduction in the SCA effectiveness for no good

reason. Also, this metric has large value for countermeasure circuits with randomly independent

power consumption even if the circuits have robustness against SCA attacks. Additionally, there

is no obviously justifiable mechanism to determine a safety threshold for this metric to flag a

circuit as vulnerable when the metric exceeds the threshold. For these reasons, we propose a

new SCA security metric using Kullback-Leibler divergence in the following subsection.

3.4.1 Kullback-Leibler divergence

Let’s consider the failure probability that the adversary makes an incorrect inference using

the standard power based SCA attacks. A circuit with high failure probability should be more

secure than the circuit with low failure probability. First, we assume that the adversary wants

to know only an output bit Y by SCA attacks. We also assume that Pr[Y = 0] = Pr[Y = 1] as

a starting point to define the new SCA security metric. Let Pr[l|y0] be the probability density

function of the power leakage given that the output Y is 0 and Pr[l|y1] be the probability

density function of the power leakage given that the output Y is 1. Suppose that the conditional

probability density functions are normal distributions with the means µ0, µ1 (assuming that

www.manaraa.com

39

µ1 > µ0) and the same variation σ2
0. Assuming that the adversary knows the conditional

probability density functions, s/he can estimate the output Y by the following hypothesis test

:

Pr[y0|l]
H0

≷
H1

Pr[y1|l],

Pr[l|y0]Pr[y0]
H0

≷
H1

Pr[l|y1]Pr[y1]

Pr[l|y0]

Pr[l|y1]

H0

≷
H1

Pr[y1]

Pr[y0]
= 1.

The adversary should choose 0 output if the a posteriori probability Pr[y0|l] is greater than the

a posteriori probability Pr[y1|l]. Otherwise, s/he should choose 1.

The failing probability of the adversary is defined as the sum of the probability that given

the output 0, the hypothesis test H1 is selected and the probability that given the output 1,

the hypothesis test H0 is selected. That is

PrF = Pr[H0|y1] + Pr[H1|y0]

= 2

∫ ∞
µ0+µ1

2

1

σ0

√
2π

exp

[
−1

2

(
x− µ0

σ0

)2
]
dx

= 2

∫ ∞
µ1−µ0
2σ0

1√
2π

exp

(
−x

2

2

)
dx

= 2Q

(
µ1 − µ0

2σ0

)
(3.10)

where Q(x) is called the complementary error function. SCA security metric using the normal-

ized standard deviation σ
µ is the following:

µ =
µ0 + µ1

2

σ =

√(
µ0 − µ0+µ1

2

)2
+
(
µ1 − µ0+µ1

2

)2
2

=
µ1 − µ0

2

σ

µ
=
µ1 − µ0

µ0 + µ1
(3.11)

Comparing Eq.(3.10) with Eq.(3.11), earlier SCA security metric for normalized variance does

not match with the failing probability (µ is not required). In this case, σ/σ0 is a better choice as

the SCA security metric. For example, if the circuit designer wants the SCA failing probability

www.manaraa.com

40

to beat least 0.9, the SCA security metric should be less than 0.12 by the following equations:

PrF = 2Q

(
µ1 − µ0

2σ0

)
= 0.9

µ1 − µ0

2σ0
= 0.12 =

σ

σ0
.

3.4.1.1 Two normal distributions with different means and variances

Suppose that two conditional probability density functions Pr[l|y0] and Pr[l|y1] have differ-

ent means and variances (µ0 6= µ1, σ0 6= σ1). In this case, the failing probability PrF is equal

to the shaded area in Fig. 3.6 called overlapping coefficient.

PrF =

∫ ∞
−∞

min(Pr[x|y0],Pr[x|y1])dx

=

∫ ∞
α

n(x;µ0, σ0)dx+

∫ α

−∞
n(x;µ1, σ1)dx (3.12)

where α =
(σ2

1µ0−σ2
0µ1)+σ0σ1

√
(µ1−µ0)2+2 ln

σ0
σ1

(σ2
0−σ2

1)

σ2
1−σ2

0
. The above equation cannot be simplified

such as Eq.(3.10) and also it is difficult to obtain the exact value. In order to get simple and

approximate value of PrF in general cases, we assume that each conditional probability density

faction has the same variance σ0 at the following subsection.

3.4.1.2 N normal distributions with the same variance σ0

The power consumptions of any circuit can be classified as N normal distribution with

µ0, µ1, . . . , µN−1 and the same σ2
0 based on the number of outputs. The failing probability

PrF of the adversary is equal to the overlapping coefficient of N normal distributions. The

PrF is larger than the smallest overlapping coefficient between two normal distributions of N

normal distributions. The two normal distributions have the smallest mean and largest mean,

respectively. The smallest overlapping coefficient is selected as the threshold of the failing

probability denoted as PrFth. If the designer set PrFth to any value, the failing probability

should be larger than the value. In this case, the threshold of the failing probability and SCA

www.manaraa.com

41

security metric are the following equations:

PrFth = 2Q

(
supi 6=j |µi − µj |

2σ0

)
SCA security metric =

supi 6=j |µi − µj |
2σ0

Generally, N normal distributions have different means and variances. In the general case, it

is difficult to compute the threshold of the failure probability and define SCA security metric.

Kullback-Leibler divergence is used to define new SCA security metric.

3.4.1.3 Kullback-Leibler divergence

Let fX(z) and fY (x) be the probability density functions of random variable X and Y ,

respectively. Kullback-Leibler divergence is defined as the following equation [S. Kullback and

R. A. Leibler (1951)]:

DKL(X||Y) =

∫
fX(z) log

fX(z)

fY (z)
dz

If X and Y are the normal distribution with µ0, σ
2
0 and µ1, σ

2
1, respectively, then

DKL(X||Y) =

∫
n(x;µ0, σ0)(log n(x;µ0, σ0)− log n(x;µ1, σ1))dx

=
{

(µ0 − µ1)2 + σ2
0 − σ2

1

}
/(2σ2

1) + ln(σ1/σ0) (3.13)

Kullback-Leibler divergence of two random variables with the normal distribution can be

computed easily. The maximum of Kullback-Leibler divergence for allowable failure probability

can be obtained. For example, if we want the failure probability of more than 0.9, the Kullback-

Leibler divergence should be less than 0.03.

Also, Kullback-Leibler divergence is related to the number of traces N that is necessary to

assert with a confidence of (1 − α) that the two normal distributions X and Y are different.

The number of traces N is a significant contributor in quantifying a lower bound on the attack

complexity. The smallest number of traces to satisfy that Pr
[
|X − Y − (µX − µY)| < ε

]
=

(1− α) is

N ≥ (σ0 + σ1)2

ε2(µ0 − µ1)2
· z2

1−α/2

www.manaraa.com

42

where the quantile z1−α/2 of the standard normal distribution has the property that

Pr
[
Z ≤ z1−α/2

]
= 1 − α/2. Comparing to Eq. (3.13), as Kullback-Leibler divergence of two

random variables increases, the number of traces N decreases. Ideally, we would like to be able

to show that N has a non-trivial, super polynomial lower bound in n - the number of bits in

the secret.

3.4.1.4 SCA security metric using Kullback-Leibler divergence

Generally, suppose that the adversary knows N normal probability density functions with

different means and variances. We define SCA security metric as Maximum Kullback-Leibler

divergence of two random variables among N random variables:

SCA security metric = MAX
Xi∼N (µi,σ

2
i)

Xj∼N (µj ,σ
2
j)

0≤i,j≤N

{DKL(Xi||Xj)} (3.14)

3.4.2 Mutual information

The second security metric to quantify DPA effectiveness is to use the mutual information

[Standaert et al. (2009)].

I(~K; ~L) = H[~K]−H[~K|~L] (3.15)

where ~K is a variable containing a part of the secret data and ~L is a leakage observation such as

power consumption through the side channel. The entropy of ~K, denoted by H[~K] is log2| ~K|

assuming that ~K is uniformly distributed. The conditional entropy H[~K|~L] is the following

equation :

H[~K|~L] = −
∑
k

Pr[k]

∫
Pr[l|k] · log2Pr[k|l]dl

where Pr[k|l] =
Pr[l|k]Pr[k]∑

k∗∈ ~K Pr[l|k∗]Pr[k∗]
.

In order to compute the mutual information, the conditional probability Pr[l|k] should be

estimated. Using simulation tools such as SPICE, the power consumptions can be measured

www.manaraa.com

43

Figure 3.6: The failure probability PrF : Overlapping coefficient of two normal distributions

resulting in a sampled estimate of the probability distribution. Since the simulation-based

power estimation requires significant time due to detailed circuit level SPICE simulation, it

is important to determine the required minimum number of sample measurements to obtain

statistically significant probability distribution. Assuming the probability distribution is the

normal distribution with the mean µ and the variance σ2, the smallest number of measurements

to satisfy that Pr
[
L−µ
σ
√
N
< ε
]

= 1 − α is N = σ2

ε2
· z2

1−α/2. The mutual information based SCA

analysis will be exploited for more realistic and accurate verification at the physical transistor

or layout level.

3.5 Recognition Rate Using Maximum Likelihood Estimation

The maximum likelihood estimator of c is defined as the following:

ĉ = arg maxci∈C Tci = arg maxci∈C
1

n

n∑
m=1

ln fL|ci(
~lm)

where Tci is the test statistic for the class ci and fL|ci is the probability density function of the

side-channel leakage L given a class ci. It requires the log-likelihood of the correct class c∗ be

larger than all other classes for the MLE to successfully recognize the side-channel leakage l

into the correct class c∗. The successful recognition rate is defined as the probability that the

www.manaraa.com

44

test statistic for the correct class c∗, Tc∗ is larger than all {T{c}−c∗} [Fei et al. (2014)] :

SR = Pr[Tc∗ > {T{c}−c∗}] (3.16)

We first consider the recoginition rate when there exist two classes such as c1, c2. Assuming

that c1 is the correct class c∗, the successful recongnition rate SR is equal to the following:

SR = Pr[Tc1 > Tc2] = Pr[Tc1 − Tc2 > 0] = Pr[∆c1,c2 > 0]

where

∆c1,c2 = Tc1 − Tc2 =
1

n

n∑
m=1

[ln fL|c1(~lm)− ln fL|c2(~lm)].

In general, the disassembler exploits only one leakage observation ~l1. For a leakage observation,

the mean and variance of ∆c1,c2 are given by the followings:

µ∆c1,c2
= EL|c1 [ln fL|c1(~l1)− ln fL|c2(~l1)] (3.17)

σ2
∆c1,c2

= VarL|c1 [ln fL|c1(~l1)− ln fL|c2(~l1)]. (3.18)

Definition 6 (Noncentral chi-square distribution). The random variable Y is said to have a

noncetral chi-square distribution [Mathai and Provost (1992)] with k degrees of freedom and

noncentrality parameter δ if Y has the density

fY (y; k, δ) = e−δ
∞∑
r=0

δr

r!

y
k
2

+r−1e−y/2

2
k
2

+rΓ
(
k
2 + r

) , (3.19)

where 0 < x <∞, k = 1, 2, . . . , δ ≥ 0, which is denoted as Y ∼ χ2
k,δ.

Theorem 4. If we assume that fL|ci is the normal density function with the mean µci and the

variance σci, then ∆c1,c2 has the linear transformed noncentral chi-square distribution with one

degree of freedom, χ2
1,δ, where δ =

(
(µ1−µ2)σ1
σ2
1−σ2

2

)2
. The successful recognition rate is equal to the

following:

SR =| 1

a
|
[
1− FY

(
b2 − 4ac

4a2

)]
(3.20)

where FY (y) is the cumulative density function of χ2
1,δ, a =

σ2
1−σ2

2

2σ2
2
, b = (µ1−µ2)σ1

σ2
2

and c =

(µ1−µ2)2

2σ2
2

+ ln σ2
σ1

.

www.manaraa.com

45

Proof.

∆c1,c2 = ln
1√

2πσ1

exp

{
−(l − µ1)2

2σ2
1

}
− ln

1√
2πσ2

exp

{
−(l − µ2)2

2σ2
2

}
= −(l − µ1)2

2σ2
1

+
(l − µ2)2

2σ2
2

+ ln
σ2

σ1

Let x = l−µ1
σ1

,

∆c1,c2 = −1

2
x2 +

{σ1x+ (µ1 − µ2)}2

2σ2
2

+ ln
σ2

σ1

=

(
σ2

1 − σ2
2

2σ2
2

)
x2 +

(µ1 − µ2)σ1

σ2
2

x+
(µ1 − µ2)2

2σ2
2

+ ln
σ2

σ1

= ax2 + bx+ c

= a

(
x+

b

2a

)2

+ c− b2

4a(
a =

σ2
1 − σ2

2

2σ2
2

, b =
(µ1 − µ2)σ1

σ2
2

, c =
(µ1 − µ2)2

2σ2
2

+ ln
σ2

σ1

)
where l is the realization of a random variable L which has the normal distribution with

the mean µ1 and the variance σ2
1, x is the realization of a random variable X = L−µ1

σ1
. Let

Z = aY + c − b2

4a , where Y =
(
X + b

2a

)2
. The probability density function of Y is given by

fY (y; k, δ) which is the noncentral chi-square density function with the k = 1 degree of freedom

and the noncentrality parameter δ = b2

4a2
. By the transformation technique, the probability

density function of Z is induced by fZ(z) = fY (w(z)) | w′(z) |, w(z) = z
a −

c
a + b2

4a2
.

fZ(z) = fY

(
z

a
− c

a
+

b2

4a2
; k = 1, δ =

b2

4a2

)
| 1

a
|

= fY

(
1

a

(
z − 4ac− b2

4a

)
; k = 1, δ =

b2

4a2

)
| 1

a
|

λ =

(
(µ1 − µ2)σ1

σ2
1 − σ2

2

)2

SR = Pr[z > 0] =

∫ ∞
0

fZ(z)dz

=

∫ ∞
0
| 1

a
| fY

(
1

a

(
z − 4ac− b2

4a

)
; k = 1, δ =

b2

4a2

)
dz

=| 1

a
|
[
1− FY

(
b2 − 4ac

4a2

)]
.

www.manaraa.com

46

Theorem 5. If we assume that fL|ci is the D-dimensional normal density function with the

mean ~µci and the variance Σci, then ∆c1,c2 has the linear transformed noncentral chi-square

distribution with the D degree of freedom, χ2
D,δ.

Proof.

∆c1,c2 = ln
1

(2π)D/2 det(Σ1)1/2
exp

{
−1

2
(~l − ~µ1)TΣ−1

1 (~l − ~µ1)

}
− ln

1

(2π)D/2 det(Σ2)1/2
exp

{
−1

2
(~l − ~µ2)TΣ−1

1 (~l − ~µ2)

}
= −1

2
(~l − ~µ1)TΣ−1

1 (~l − ~µ1) +
1

2
(~l − ~µ2)TΣ−1

2 (~l − ~µ2) + ln
det(Σ2)1/2

det(Σ1)1/2

= −1

2
~ZT ~Z +

1

2
(~Z + Σ−1

1 (~µ1 − ~µ2))TΣ
1/2
1 Σ−1

2 Σ
1/2
1 (~Z + Σ−1

1 (~µ1 − ~µ2))

+ ln
det(Σ2)1/2

det(Σ1)1/2

= −1

2
~ZTPP T ~Z +

1

2
(~Z + Σ−1

1 (~µ1 − ~µ2))TPΛP T (~Z + Σ−1
1 (~µ1 − ~µ2))

+ ln
det(Σ2)1/2

det(Σ1)1/2

= −1

2
(P T ~Z)T (P T ~Z) +

1

2
(P T ~Z + P TΣ−1

1 (~µ1 − ~µ2))TΛ(P T ~Z + P TΣ−1
1 (~µ1 − ~µ2))

+ ln
det(Σ2)1/2

det(Σ1)1/2

= −1

2

D∑
i=1

u2
i +

1

2

D∑
i=1

λi(ui + bi)
2 + ln

det(Σ2)1/2

det(Σ1)1/2

=
1

2

D∑
i=1

(
(λi − 1)u2

i + 2λibiui + λib
2
i

)
+ ln

det(Σ2)1/2

det(Σ1)1/2

=
D∑
i=1

αi

(
ui +

βi
2αi

)2

+ γi −
β2
i

4α2
i(

αi =
λi − 1

2
, βi = λibi, γi =

λibi
2

+
1

D
ln

det(Σ2)1/2

det(Σ1)1/2

)

where fx(; k, δ) is the noncentral chi-square density function with the k degree of freedom and

the noncentrality parameter δ, Λ = diag(λ1, λ2, . . . , λn), λi is the eigenvalue of Σ
1/2
1 Σ−1

2 Σ
1/2
1 ,

www.manaraa.com

47

P = [~p1, ~p2, . . . , ~pn], PP T = I, ~pi is the eigenvector corresponding to λi, ~U = P T ~Z, E[~Z] =

~0,Cov[~Z] = I,E[~U] = ~0,Cov[~U] = I, and ~b = P TΣ−1
1 (~µ1 − ~µ2).

Theorem 6. If there exist three classes c1, c2, c3 and the correct class of a sample is c1, the

range of successful recognition rate is the following :

min{Pr[∆c1,c2 > 0],Pr[∆c1,c3 > 0]} ≤ SR ≤ max{Pr[∆c1,c2 > 0],Pr[∆c1,c3 > 0]}

Proof. Let Tci be the test statistic for the class ci : Tci = ln fL|ci(
~lm). Since we assume that the

sample belongs to the class c1, the successful recognition rate SR is equal to Pr[max{Tc1 , Tc2 , Tc3} =

Tc1] or Pr[Tc1 > Tc2 , Tc1 > Tc3].

Given that Tc2 > Tc3 , Pr[max{Tc1 , Tc2 , Tc3} = Tc1] = Pr[Tc1 > Tc2]. Otherwise, that is,

given that Tc3 ≥ Tc2 , Pr[max{Tc1 , Tc2 , Tc3} = Tc1] = Pr[Tc1 > Tc3]. Thus, the successful

recognition rate is equal to the following:

SR = Pr[Tc2 > Tc3]Pr[Tc1 > Tc2] + Pr[Tc3 ≥ Tc2]Pr[Tc1 > Tc3]

= αPr[Tc1 > Tc2] + (1− α)Pr[Tc1 > Tc3]

= {Pr[Tc1 > Tc2]− Pr[Tc1 > Tc3]}α+ Pr[Tc1 > Tc3]

where α is Pr[Tc2 > Tc3] .

If Pr[Tc1 > Tc2] > Pr[Tc1 > Tc3], SR has the minimum of Pr[Tc1 > Tc3] at α = 0 and the

maximum of Pr[Tc1 > Tc2] at α = 1. If Pr[Tc1 > Tc2] < Pr[Tc1 > Tc3], SR has the minimum

of Pr[Tc1 > Tc2] at α = 1 and the maximum of Pr[Tc1 > Tc3] at α = 0. Thus, the range of

SR is between Pr[Tc1 > Tc2] and Pr[Tc1 > Tc3]. Fig. 3.7 shows the successful recognition rate

according to α in the both cases.

3.6 Experiment

We implemented AES SBOX based on composite finite field proposed by Satoh et al. [Satoh

et al. (2001)] to compute our SCA security metrics. We used Cadence RTL Compiler and

www.manaraa.com

48

Figure 3.7: Successful recognition rate according to α (a) when Pr[Tc1 > Tc2] > Pr[Tc1 > Tc2]

(b) when Pr[Tc1 > Tc3] > Pr[Tc1 > Tc2]

OSU standard cell library based on AMI C5N 0.6 µ process as the logic synthesizer and the

technology library, respectively. The calculator of the expected number of transitions depending

on triggered input bits is programmed with Perl/Tk. It generates the logic network graph with

the synthesized netlist and searches all paths from triggered inputs to outputs. Shared paths

of all paths are split and the number of transitions on those paths is calculated differently

depending on the staring node of the shared path and the different between arrival times at

the node. The sum of the number of transitions on each path, denoted by R(T) is the total

number of transitions in the SBOX during computation.

In order to compute coefficients of Eq.(3.9), 1000 random pairs of (xi, yi) (which represent

the number of transitions and average power during computation, respectively) are sampled

using Cadence Spectre analog simulator for sampling yi and transition counter for sampling xi.

Fig. 3.8 shows scattered plots of 1000 sample pairs and the linear regression line. In this case,

β̂ and α̂ are computed as 0.085 and 1.05, respectively. That is, the mean of estimated power

of any input vector, µŶ is equal to α̂ + β̂R(T) and the variance σ2
Ŷ

is β̂σ2
R. The probability

density function of the estimated power has the normal distribution with the mean µŶ and the

variance σ2
Ŷ

. 256 normal distributions which results from all possible input vector (28) can be

obtained by 1000 times simulations and renewal process based estimation. SCA security metric

using KL divergence is 3.72 which corresponds to about 17% failure probability.

Using simulated samples, correlation power analysis attack of this SBOX was executed. We

www.manaraa.com

49

Figure 3.8: Scattered plots and linear regression (β̂ = 0.085, α̂ = 1.05) of 1000 random samples

assume that the correct key value is 19. The correlation coefficient ρ of 19 guess key has the

highest value (0.53) and the guess key is correct. Also, the success probability was measured

depending on the number of samples (N). The success probability is over 95% when N is more

than 220 samples. Fig. 3.12 shows the result of CPA attack. Thus, this SBOX should be

protected against power based SCA attacks.

3.7 Conclusion

We have developed (1) a quantitative metric to capture the SCA resistance of a combi-

national circuit, (2) developed and implemented a stochastic power estimation method using

renewal process and linear regression which is more efficient than simulation based method.

As an example, we applied our metric and estimation method to AES SBOX implementation

at the logic level. We will apply these techniques to many unprotected and protected crypto-

graphic implementations and develop secure implementations with DKL < 0.03 (which means

the threshold of the failing probablity is greater than 90%).

www.manaraa.com

50

Figure 3.10 Correlation Power Analysis
attack of AES SBOX (N = 1000)

Figure 3.11 Success probability according
to the number of samples (N)

Figure 3.12: CPA attack of AES SBOX

www.manaraa.com

51

CHAPTER 4. SECURE LOGIC STYLE

4.1 Introduction

In order to remove dependency between power consumption and intermediate values of the

executed cryptographic algorithm, the cryptographic hardware can be implemented with secure

primitive logic cells such as Sense Amplified Based Logic (SABL) [Tiri et al. (2002)], Wave

Dynamic Differential Logic (WDDL) [Tiri and Verbauwhede (2005)] and t-private logic circuit

[Ishai et al. (2003)]. These secure logic style have the different method to make independent

power consumption of the performed operation and the processed data values. SABL and

WDDL consume equal amounts of power consumption in each clock cycle, but on the other

hand, t-private logic circuit randomizes amounts of power consumption in each clock cycle.

In other words, SABL and WDDL implement the hiding countermeasure and t-private logic

circuit implements the masking countermeasure.

Also, all these secure cells have robustness against side-channel attacks but only t-private

logic circuit prevents from the probing attack by which an adversary can observe only t-limited

number of internal nodes per each clock cycle. In a view of the design implementation, t-private

logic circuit and WDDL are implemented with the general CMOS digital cell library but each

SABL cell should be full-customized. The area of t-private logic circuit has the largest among

these secure logic style but the power consumption of t-private logic circuit is the smallest. Since

SABL and WDDL have two phase (the precharge phase and the evaluation phase) during each

clock cycle in which phase signals are switched, the power consumption of SABL and WDDL

has larger value than the power consumption of t-private logic circuit. Table 4.1 shows the

summary of these secure logic style.

Oklahoma State University (OSU) digital cell library based on the FreePDK45 techonalogy

www.manaraa.com

52

library is exploited to implement the secure logic style. For the logic synthesis and physical

layout, commercial EDA tools such as Cadence’s tools and Synopsys’s tools are used. Our logic

cell library consists of implemented secure logic cells, OSU digital cells and FreePDK45 analog

cells. This cell library defines the cell function, area, delay and power dissipation as the liberty

file format.

This chapter is organized as follows. Section 4.2 presents sense amplifier based logic (SABL).

Section 4.3 describes wave differential dynamic logic (WDDL). t-private logic circuits are pre-

sented in Section 4.4. Section 4.5 presents implementation of secure logic style. Finally, Section

4.6 summaries this chapter.

4.2 Sense Amplifed Based Logic (SABL)

Sense Amplifier Based Logic has been introduced by Tiri et al. [Tiri et al. (2002), Mangard

et al. (2007)]. SABLs are specially designed to have a constant internal power consumption

independent of the proposed logic values. SABLs are implemented as dual-rail precharge logic

styles which means that each input is encoded as the pair of wires consisting of the original

signal and inverted signal and all logic signals alternate between precharge values and evaluated

values. In the precharge phase, the values of the complementary wires are set to the precharge

value. During the evaluation phase, the values on the complementary wires are set to (0, 1) or

(1, 0) according to the the processed data. Assuming that the precharge value is 0 and that the

half of the clock cycle corresponds to the evaluation phase, one complementary output should

Table 4.1: Secure logic style

SABL WDDL t-private logic

SCA resistance 3 3 3

Probing resistance 5 5 3

Method Hiding Hiding Random masking

Design Full custom Semi custom Semi custom

Area Medium Low High

Power Medium High Low

www.manaraa.com

53

perform the transitions 0 → 1 → 0 during a clock clock and another complementary output

has no transition. This means that SABL always performs the same transitions at its outputs

during each clock cycle independent of its inputs.

Fig. 4.1 shows the transistor schematic of a generic n-type SABL cell. The n-type SABL

cell consists of the differential pull-down network (DPDN) which is made of NMOS transistors

and the cross-coupled inverters I1 and I2 of which the output is connected to the input of

another inverter and vice versa.

An n-type SABL cell is in the precharge phage when the clock signal is 0. During the

precharge phase, the PMOS transistors M3 and M4 are turned on and then all internal nodes

of an n-type SABL cell are set to 1. As a result, the inverters I3 and I4 produce a precharge

value of (0, 0) at the complementary outputs.

When the clock signal is 1, the n-type SABL cell is in the evaluation phase. During the

evaluation phase, the input signals in1, in1, . . . , inn, inn are set to complementary values. The

NMOS transistor M2 is turned on and the PMOS transistors M3 and M4 are turned off. Thus,

the nodes n3 and n4 of the DPDN are set to 0. One of the nodes n1 and n2 is connected to one

of the nodes n3 and n4, which is determined by the structure of the DPDN. If n1 is connected

to 0 via the DPDN, the inverter I1 is operational. Since the input signal n6 of the inverter I1

is still 1, the output signal n5 of the inverter I1 is switched to 0. The node n5 also works as

the input of the inverter I2 and thus the output signal n6 of the inverter I2 stays at 1. The

complementary outputs out and out are set to (1, 0). If n2 is connected to 0 via the DPDN, the

inveter I2 is working. By the signal 1 of n5, the node n6 is switched to 0. The complementary

outputs out and out are set to (0, 1).

In order for n-type SABL cells to consume constant power, the DPDN in the cell must

be satisfied with some requirements, and the internal structure of the cells must be balanced.

DPDN requirements :

1) Every internal node of the DPDN should be connected to one of the four output nodes

n1, n2, n3 or n4. Together with the NMOS pass-transistor M1, this structure ensures that all

internal nodes of the DPDN are discharged to 0 during the evaluation phase and charged to 1

during the precharge phase.

www.manaraa.com

54

Figure 4.1: Schematic of a n-type SABL cell

2) Every possible conducting path in the DPDN should have the same resistance.

3) Both wire of every complementary input wire pair must be connected to the same number

of gate terminals of transistors with identical parameters. This ensures that the capacitance of

complementary inputs of SABL cells are pairwise balanced.

4.3 Wave Dynamic Differential Logic (WDDL)

Wave Dynamic Differential Logic has been also introduced by Tiri et al. [Tiri and Ver-

bauwhede (2004), Mangard et al. (2007)]. WDDL cells can be built based on general logic

cells in the standard cell library. The structure of WDDL cells is much simpler than that of

SABL cells. This leads in general to less complex and significantly smaller circuits. Another

advantage of WDDL cells is that they can also be realized on FPGAs.

Fig. 4.2 shows the schematic of a combinational WDDL cell. A combinational WDDL cell

www.manaraa.com

55

Figure 4.2: Schematic of a combinational WDDL cell

basically consists of two circuits that realize the Boolean function f1 and f2 such that

f1(in1, . . . , inn) = out

f2(in1, . . . , inn) = out

f1(in1, . . . , inn) = f2(in1, . . . , inn),

where (in1, in1, . . . , inn, inn) are complementary input signals and (out, out) are complementary

output signals. These Boolean functions must be positive monotonic in order to achieve the

same transitions at output signals during each clock cycle for all possible transitions of input

signals. The positive monotonic Boolean functions mean that if any input signals change in a

direction 0→ 1 or 1→ 0, either out or out must be switched in the same direction.

Assuming that the precharge value is set to 0, in the precharge phase, all complementary

input signals are set to 0. Since any 1 → 0 transitions of input signals result in only one

1 → 0 transitions of an output signal, complementary output signals must be set to 0. In the

evaluation phase, all input signals are set to complementary values such as (0, 1) or (1, 0). A

0 → 1 transition at either out or out node must occur because of 0 → 1 transitions of input

signals. As a result, either out or out always changes like 0→ 1→ 0 and another output signal

stays at 0 during a clock cycle.

www.manaraa.com

56

4.4 t-private Private Circuit

We assume that an adversary can observe only limited number of internal nodes per clock

cycle. In other words, this adversary has bandwidth limitations. This is the t-observation

limited, interactive adversary of Ishai et al. [Ishai et al. (2003)]. We adopt a variant of Agrawal

and Aggarwal [Agrawal and Aggarwal (2001)] who provide an entropy based definition of pri-

vacy.

Definition 7. Privacy of a single variable X is defined as the entropy of X:

h(X) = −
∫

ΩX

fX(x) log fX(x)dx

Note that ΩX is the domain of X and x is a value in ΩX . This is the classical information

theoretic definition of entropy for a variable X viewed as a random variable.

If this variable X’s privacy were to be enhanced by applying a perturbing variable R, we

can capture conditional entropy of X as follows.

Definition 8. Conditional privacy of a single variable X perturbed by a variable R is defined

as the conditional entropy of X:

h(X|R) = −
∫

ΩX,R

fX,R(x, r) log fX|R(x|r)dXdR.

The loss of privacy for X resulting from the exposure of R is the key definition of privacy

developed in Agrawal and Aggarwal [Agrawal and Aggarwal (2001)].

Definition 9. The privacy loss for variable X resulting from the exposure of a perturbing

variable R is defined as :

1− 2h(X|R)

2h(X)
.

www.manaraa.com

57

Note that ifR is a random variable chosen independently fromX (as is the case in [Messerges

(2000)] and [Ishai et al. (2003)]), the privacy loss is 0 since h(X|R) = h(X). Now we can define

the notion of privacy as used in Ishai et al. [Ishai et al. (2003)] .

Definition 10 (t-private circuits:). A variable x is designed to be t-private if when perturbed

by k ≤ t variables rx1 , rx2 , . . . , rxk , the privacy loss for x resulting from the exposure of any

subset of up to t perturbing variables is 0.

Note that this definition of privacy insists on maintaining 0 correlation between the pro-

tected variable x and any subset of its perturbing variables. In these schemes, x is represented

by at least t + 1 physical variables, also known as its shares xs0 , xs1 , . . . , xst . In other words,

almost all the shares of x carry 0 information about x in these schemes. We call such privacy

schemes information isolating schemes or information isolating shares.

Messerges [Messerges (2000)] splits each variable x into two shares rx (a random bit) and

rx ⊕ x. He calls this scheme a masking scheme. He also introduces a similar arithmetic mask-

ing variant. Ishai et al. generalize this scheme to split x into t + 1 shares xs0 = rx1 , xs1 =

rx2 , . . . , xst−1 = rxt , xst = rx1 ⊕ rx2 ⊕ · · · ⊕ rxt ⊕x. They then provide a transformation for the

Boolean basis of a NOT gate and an AND gate where each operand is a t+ 1 bit value.

4.4.1 Ishai’s t-private circuit

Definition 11 (Input Encoder I). Each input xi is split into t + 1 shares: First, t random

binary values, rx1 , rx2 , . . . , rxt are chosen for xs0 , xs1 , . . . , xst−1 using t random-bit gates. And

then xst is encoded into x⊕ rx1 ⊕ rx2 ⊕ · · · ⊕ rxt. The circuit I computes the encoding of each

input bit independently in this way.

Definition 12 (Output Decoder O). Each output of a circuit has t + 1 bits, ys0 , ys1 , . . . , yst,

which are decoded into ys0 ⊕ ys1 ⊕ · · · ⊕ yst in order to obtain real output.

www.manaraa.com

58

Definition 13 (t-private NOT circuit). Only a wire of split inputs, xs0 , xs1 , . . . , xst is con-

nected to a NOT gate.

Definition 14 (t-private AND circuit). Consider an AND gate with inputs a, b and ouput c.

Let input shares of a and b be ai, bi for 0 ≤ i ≤ t, respectively and output shares of c be ci for

0 ≤ i ≤ t. In the transformation of an AND gate, we first compute intermediate values zi,j for

i 6= j. For each 0 ≤ i < j ≤ t, zi,j is a random bit and zj,i is equal to (zi,j ⊕ aibj)⊕ ajbi. Now,

we compute the output bits c0, c1, · · · , ct as

ci = aibi ⊕
⊕
j 6=i

zi,j . (4.1)

Definition 15 (t-private OR circuit). Consider an OR gate with inputs a, b and ouput c. Let

input shares of a and b be ai, bi for 0 ≤ i ≤ t, respectively and output shares of c be ci for

0 ≤ i ≤ t. For one ai and one bj, these bits should be inverted. In the transformation of an

OR gate, we first compute intermediate values zi,j for i 6= j. For each 0 ≤ i < j ≤ t, zi,j is a

random bit and zj,i is equal to (zi,j⊕aibj)⊕ajbi. Now, we compute the output bits c0, c1, · · · , ct

as

ci = aibi ⊕
⊕
j 6=i

zi,j . (4.2)

where one ci is connected to a NOT gate.

Fig. 4.3 describes the Ishai’s t-private AND and OR circuit when t is 1. The area and

energy overhead is of the order of t2 [Tyagi (2005)]. We develop the following schema with

smaller overhead.

www.manaraa.com

59

Figure 4.3: The Ishai’s t-private circuits (t = 1).

4.4.2 The modified t-private circuit

Theorem 7 (AND-XOR network with a random bit). Fig. 4.4 AND-XOR network with a

random bit has the perfect secrecy for two inputs, x1, x2 and an intermediate value, xi1, if r is

a random variable.

Proof.

Prz|x(i|j) =
Prz,x(i, j)

Prx(j)
=

Prz(i)Prx(j)

Prx(j)

= Prz(i) = 0.5

for i, j ∈ {0, 1}, x ∈ {x1, x2, xi1}.

Theorem 8 (Expanded AND-XOR network). We can expand an AND-XOR network with a

random bit by XORing it with another AND gate. This expanded network can be expanded

www.manaraa.com

60

Figure 4.4: An AND-XOR network with a random bit.

Figure 4.5: An expanded AND-XOR network.

continuously using the same structure. These expanded AND-XOR networks also have per-

fect secrecy for all inputs and any intermediate value. In other words, Prz|x(i|j) is equal to

Prz(i) for i, j ∈ {0, 1}.

We modified Ishai’s t-private circuit [Ishai et al. (2003)] into a simpler t-private circuit using

the expanded AND-XOR network. This also requires fewer random bits.

Definition 16 (Modified t-private AND circuit). i)When t is an odd number,

ci = (a0bi ⊕ zi mod t+1
2

)
t⊕

j=1

ajb(j+i) mod t+1

for i = 0, 1, . . . , t

ii) When t is an even number,

ci = (a0bi ⊕ zi mod t+2
2

)

t⊕
j=1

ajb(j+i) mod t+1

for i = 0, 1, . . . , t− 1

ct = (a0bt ⊕ zt mod t+2
2
⊕ zt+1 mod t+2

2
)

t⊕
j=1

ajb(j+i) mod t+1

www.manaraa.com

61

Table 4.2: Comparison between t-private AND circuits

Modified t-private AND circuit Ishai’s t-private AND circuit

outputs (t = 2) c0 = (a0b0 ⊕ z0)⊕ a1b1 ⊕ a2b2 c0 = a0b0 ⊕ z0,1 ⊕ z0,2

c1 = (a0b1 ⊕ z1)⊕ a1b2 ⊕ a2b0 c1 = a1b1 ⊕ z1,2 ⊕ {(a0b1 ⊕ z0,1)⊕ a1b0}
c2 = (a0b2 ⊕ z0 ⊕ z1)⊕ a1b0 ⊕ a2b1 c2 = a2b2 ⊕ {(a0b2 ⊕ z0,2)⊕ a2b0} ⊕ {(a1b2 ⊕ z1,2)⊕ a2b1}

of random bits d t+1
2 e = O(t) t(t+1)

2 = O(t2)

of XOR gates Ishai’s model has additional t(t+ 1)− 2d t+1
2 e XOR gates compared to modified t-private model.

where zj is a random bit.

Table 4.2 shows comparison between the modified t-private AND circuit and the Ishai’s

t-private AND circuit. The modified t-private circuit has smaller number of random bits and

XOR gates and almost the same delay.

4.5 Design of Secure logic style

4.5.1 Design of SABL-NAND

Fig. 4.6 shows the transistor schematic of a n-type SABL NAND gate using Virtuoso

schematic editor with NCSU FreePDK45 technology library [NCSU (2011)] . It consists of

the differential pull-down network (DPDN) and the cross-coupled inverters. The DPDN is

made of NMOS transistors. The DPDN satisfies all requirments. First, all internal nodes for

complementary inputs signals are connected to one of the four output nodes of the DPDN.

Second, every conducting path goes through two NMOS transistors and thus has the same re-

sistance since all NMOS transistors in the DPDN are equally sized. Third, all complementary

input wires are connected to the same number of transistors.

4.5.1.1 Simulation of SABL-NAND

We simulate the SABL NAND gate using Cadence Spectre. Fig. 4.12 shows the waveforms

of inputs, outputs and currents. One output of output signals is switched such as 0→ 1→ 0.

www.manaraa.com

62

Figure 4.6: Schematic of SABL-NAND gate

The waveforms of currents for all possible inputs have the same form and power consumptions

are almost constant. Table 4.3 shows power consumption and peak current for all possible

inputs.

Table 4.3: Power consumption of SABL NAND (45 nm process)

Input a Input b Power consumption (nW) Peak Current (mA)

0 0 5757.87 0.2544

0 1 5752.88 0.2536

1 0 5760.58 0.2544

1 1 5753.98 0.2526

- Average(µ) 5756.33 0.2538

- Standard deviation(σ) 3.5524 0.0008

- σ
µ 0.0006 0.0034

www.manaraa.com

63

Figure 4.8 Input a = 0, b = 0 Figure 4.9 Input a = 0, b = 1

Figure 4.10 Input a = 1, b = 0 Figure 4.11 Input a = 1, b = 1

Figure 4.12: Waveform of SABL NAND gate

4.5.2 Design of WDDL

Oklahoma State University digital cell library based on the FreePDK45 technology library

[OSU (2008)] is used to design WDDL cells. Fig. 4.13 shows the schematic of a WDDL-NAND

gate using Virtuoso schematic editor.

4.5.2.1 Simulation of WDDL-NAND

We simulate the WDDL-NAND gate using Cadence Spectre. Fig. 4.19 shows the waveforms

of inputs, outputs and currents. One output of output signals is switched such as 1→ 0→ 1.

The waveforms of currents for all possible inputs have the same form and power consumptions

are almost constant. Table 4.4 shows power consumption and peak current for all possible

www.manaraa.com

64

inputs.

Table 4.4: Power consumption of WDDL NAND (45 nm process)

Input a Input b Power consumption (nW) Peak Current (mA)

0 0 5939.15 0.4086

0 1 5927.37 0.4065

1 0 5885.04 0.4286

1 1 5872.73 0.4137

- Average(µ) 5906.07 0.4144

- Standard deviation(σ) 32.15 0.0099

- σ
µ 0.0054 0.024

4.5.3 Design of t-private logic cells

Fig. 4.20 and 4.21 show the schematic of t = 1-private NAND circuit and t = 1-private AND

circuit using Virtuoso schematic editor with the OSU FreePDK45 cell library [OSU (2008)].

4.5.3.1 Simulation of t-private logic circuit

We simulate t = 1-private NAND circuit and t = 1-private AND circuit using Cadence

Spectre. Table 4.5 and 4.6 show power consumption and peak currents for all possible output

transitions of t = 1-private NAND and AND circuit, respectively.

Figure 4.13: Schematic of WDDL-NAND gate

www.manaraa.com

65

Figure 4.15 Input a = 0, b = 0 Figure 4.16 Input a = 0, b = 1

Figure 4.17 Input a = 1, b = 0 Figure 4.18 Input a = 1, b = 1

Figure 4.19: Waveform of WDDL NAND gate

4.5.4 Comparison of t-private NAND, SABL-NAND and WDDL-NAND

Table 4.7 shows the mean (µ) and the standard deviation (σ) of power consumption for

all possible transitions of output signals, the average peak current, the number of PMOS

transistors and the number of NMOS transistors. The power consumption of t(= 1)-private

NAND circuit has the smallest values even though it consumes the largest area. Since SABL-

NAND and WDDL-NAND require the precharge phase and the evaluation phase during a clock

cycle in which phase transitions of input and output signals occur, the power consumption of

SABL-NAND and WDDL-NAND has larger values than that of t-private NAND circuit. But

the peak current of t-private NAND is the highest. Based on the normalized variance metric,

SCA vulnerability of SABL-NAND is the lowest. Note that only t-private logic circuit has

www.manaraa.com

66

Figure 4.20: Schematic of NAND2X1t1

Figure 4.21: Schematic of AND2X1t1

www.manaraa.com

67

Table 4.5: Power consumption of NAND2X1t1 (45 nm process)

Transition of output Power consumption (nW) Peak Current (mA) Number of Transitions

0→ 0 4194.55 0.719 64

0→ 1 4173.27 0.745 192

1→ 0 4194.40 0.668 192

1→ 1 4178.08 0.701 576

Average(µ) 4185.08 0.709 -

Standard deviation(σ) 121.73 0.001 -
σ
µ 0.029 0.0014 -

Table 4.6: Power consumption of AND2X1t1 (45 nm process)

Transition of output Power consumption (nW) Peak Current (mA) Number of Transitions

0→ 0 4209.30 0.717 576

0→ 1 4230.54 0.657 192

1→ 0 4207.52 0.725 192

1→ 1 4225.71 0.701 64

Average(µ) 4215.76 0.699 -

Standard deviation(σ) 77.15 0.0009 -
σ
µ 0.018 0.0013 -

robustness against both SCA attack and probing attack even though it has the largest area

and peak current. In order to prevent from both SCA attacks and probing attack, t-private

logic circuits should be utilized.

Table 4.7: Comparison of t-private NAND, SABL-NAND and WDDL-NAND

t-private NAND SABL-NAND WDDL-NAND

Average (µ) of Power (nW) 4185.08 5736.33 5906.07

Standard deviation (σ) of Power (nW) 121.73 3.55 32.15

Average of Peak current (mA) 0.709 0.2538 0.4144
σ
µ 0.029 0.0006 0.0054

Number of PMOS 36 6 6

Number of NMOS 36 12 6

4.5.5 SCA attacks of t-private logic circuit

In order to verify SCA vulnerability of t-private logic circuits, profiling SCA attacks are

performed. Simulation results of Cadence Specte are used for profiling (or training). LS-

SVM and QDA classifier recognize power traces as one of 4 classes which corresponds to 0 →

www.manaraa.com

68

Table 4.8: Successful recognition rate of t-private circuits using LS-SVM and QDA classifiers

LS-SVM QDA

NAND2X1t1 19.26 % 31.44 %

AND2X1t1 24.85 % 25.09 %

OR2X1t1 14.81 % 15.52 %

NOR2X1t1 15.50 % 16.21 %

0, 0 → 1, 1 → 0 and 1 → 1 transition of the output signal. QDA classifier has the largest

successful recognition rate (31.44%) of t-private NAND circuit. This value is only 6 % larger

than randomly selected recognition rate which is equal to 25%. In other cases, successful

recognition rates are less than 25%. As a result, these t-private logic circuits are mostly secure

against SCA attacks.

4.6 Conclusion

In this chapter, SABL cells, WDDL cells and t-private logic cells have been implemented.

These secure logic styles are necessities for SCA robust hardware implementation. They are

included in the technology library. We verify SCA vulnerability of t-private logic circuits using

machine learning technique such as LS-SVM and QDA.

www.manaraa.com

69

CHAPTER 5. FPGA IMPLEMENTATION AND ASIC

IMPLEMENTATION

5.1 Introduction

In this chapter, we propose the methodology of secure hardware implementation on two

different hardware, FPGA and ASIC. FPGA chip is made up of a finite number of configurable

logic blocks (CLBs) with programmable interconnects to implement a reconfigurable digital

circuit. The CLBs are the basic logic unit of an FPGA and made up of two basic components

: flip-flops and lookup tables (LUTs). On the other hand, ASIC is implemented with standard

cells which consist of digital logic gates such as AND, OR, NAND, INVERTER, XOR, flip-

flops, buffers and so on. All kinds of secure logic styles can be utilized on ASIC implementation

but secure logic styles to synthesize on FPGA are WDDL cells are t-private logic circuits.

We focus on t-private logic circuits for both FPGA and ASIC design. For more suitable and

efficient design on FPGA, t-private logic circuits are modified. The modified version is called

tail-recursive t-private circuits. In Section 5.2, the tail recursive t-private circuit is defined and

we deal with how to map the secure logic style on FPGA. Typical ASIC design flow requires the

standard cell library for logic synthesis, place & route, physical layout and timing verification.

t-private logic circuit as well as general digital logic cells should be included in the standard

cell library. In Section 5.3, we propose the method to build the secure logic cell library and to

implement secure ASIC design. Finally, Section 5.5 concludes this chapter.

www.manaraa.com

70

5.2 FPGA Implementation

5.2.1 The tail recursive t-private circuit

Ishai [Ishai et al. (2003)] describes a transformation that is best applied in topological order

with input bits transformed first. An alternate way would be to apply the recursion at the

output node. This is what we call tail-recursive private circuits.

Consider a function f(x1, x2, . . . , xn) of n bits. If we wanted t-privacy, we will first determine

t random shares just as in Ishai’s schema. However, these random shares are at the granularity

of function truth tables. Hence we will generate f ri (x0
1, . . . , x

t
1, x

0
2, . . . , x

t
2, . . . , x

0
n, . . . , x

t
n) as a

random truth table [tfi0 , t
fi
1 , . . . , t

fi
2nt−1] for i = 0, 1, . . . , t − 1. The (t + 1)st share would be

derived from the other random t shares so that ft(x
0
1, . . . , x

t
1, x

0
2, . . . , x

t
2, . . . , x

0
n, . . . , x

t
n) has the

truth table [tft0 , t
ft
1 , . . . , t

ft
2nt−1] such that tftj = tfj ⊕ t

f1
j ⊕ t

f2
j ⊕ · · · ⊕ t

ft−1

j for 0 ≤ j ≤ 2nt − 1.

For the perfect secrecy, each function, f ri , ft should meet the following condition:

Prfi|xj (p|q) = Prfi(q) for p, q ∈ {0, 1}.

Definition 17 (The tail recursive t-private circuit). Let a original function with n inputs be

f(x1, x2, . . . , xn). Each input, xm has t-random shares, x0
m, x

1
m, . . . , x

t−1
m , and an encoded bit,

xtm = xm ⊕ x0
m ⊕ x1

m ⊕ · · · ⊕ xt−1
m . The tail recursive t-private circuit is defined as follows:

f ri =
⊕
m∈M

xim (5.1)

ft = f
⊕
i∈I

f ri (5.2)

where I = {0, 1, . . . , t− 1},

M ⊆ {1, 2, . . . , n},

1 ≤ |M | ≤ n.

Note that M is a random subset of {1, . . . , n} and f ri in (5.1) is a random function.

www.manaraa.com

71

Proof. Since xim for i ∈ I is a random variable,

Prfri |xim(p|q) = Prfri (p) = 0.5, where p, q ∈ {0, 1}.

Thus, f ri has perfect secrecy for all inputs.

Let us verify whether ft has perfect secrecy. An n-variable Boolean function f can be expressed

in the following Canonical Reed-Muller expansion [Reed (1954)] of 2n terms:

f(x1, x2, . . . , xn) = a0 ⊕ a1x1 ⊕ a2x2 ⊕ · · · ⊕ a2n−1x1x2 · · ·xn,

where ai ∈ {0, 1}.

If we substitute ai(x
0
i ⊕ x1

i ⊕ · · · ⊕ xti) for aixi, then

f(x1, . . . , xn) = a0 ⊕ a1(x0
1 ⊕ x1

1 ⊕ · · · ⊕ xt1)

⊕ a2(x0
2 ⊕ x1

2 ⊕ · · · ⊕ xt2)⊕ · · ·

⊕ an(x0
n ⊕ x1

n ⊕ · · · ⊕ xtn)

⊕ an+1

(⊕
i 6=j

xixj
)
⊕ · · · ⊕ a2n−1x1x2 · · ·xn

=
(
a1x

0
1 ⊕ a2x

0
2 ⊕ · · · ⊕ anx0

n

)
⊕
(
a1x

1
1 ⊕ a2x

1
2 ⊕ · · · ⊕ anx1

n

)
⊕ · · ·

⊕
(
a1x

t−1
1 ⊕ a2x

t−1
2 ⊕ · · · ⊕ anxt−1

n

)
⊕
(
a0 ⊕ a1x

t
1 ⊕ a2x

t
2 ⊕ · · · ⊕ anxtn⊕

an+1

(⊕
i 6=j

xixj
)
⊕ · · · ⊕ a2n−1x1x2 · · ·xn

)
.

www.manaraa.com

72

ft = f r0 ⊕ f r1 ⊕ · · · ⊕ f rt−1 ⊕ f

=
(
a1x

0
1 ⊕ a2x

0
2 ⊕ · · · ⊕ anx0

n ⊕ f r0
)

⊕
(
a1x

1
1 ⊕ a2x

1
2 ⊕ · · · ⊕ anx1

n ⊕ f r1
)
⊕ · · ·

⊕
(
a1x

t−1
1 ⊕ a2x

t−1
2 ⊕ · · · ⊕ anxt−1

n ⊕ f rt−1

)
⊕
(
a0 ⊕ a1x

t
1 ⊕ a2x

t
2 ⊕ · · · ⊕ anxtn

⊕ an+1

(⊕
i 6=j

xixj
)
⊕ · · · ⊕ a2n−1x1x2 · · ·xn

)
=
((⊕

m0∈M
x0
m0

)
⊕ · · · ⊕

(⊕
mt−1∈M

xt−1
mt−1

))
⊕ f

= f r(x0
1, . . . , x

t−1
1 , . . . , x0

n, . . . , x
t−1
n)⊕ f(x1, . . . , xn) (5.3)

= ft(x
0
1, . . . , x

t
1, . . . , x

0
n, . . . , x

t
n). (5.4)

Since Prfr|xim(p|q) = Prfr(p) = 0.5 and Prxm|xim(p|q) = Prxm(p) = 0.5 in (5.3),

Prft|xim(p|q) = Prft(p) = 0.5, p, q ∈ {0, 1} in (5.4).

Thus, ft also has perfect secrecy for all inputs, xim.

5.2.2 Mapping into k-LUTs with unlimited number of inputs

FPGAs have k-LUT granularity truth tables built in their architecture. From the power

probing point of view each LUT is a black-box. This is because SRAMs precharge both bit and

bit lines for all bits. Exactly one bit-line discharges. Hence, the proposed tail-recursive private

circuits are ideally suited for FPGA architectures.

Each of the randomized truth tables can be mapped to its own LUT. Hence, all the t

function level shares are isolated. The key assumption is that the t probes an adversary can

www.manaraa.com

73

Figure 5.1: Transformation into LUT-based t-private circuit

use do not go inside a truth table. If we also assume that k-LUTs has sufficiently many inputs

so that |xim| = nt ≤ k for m ∈ {1, .., n}, i ∈ {0, ..., t}, the number of k-LUTs increases to t

times the number needed for the original functions. With the LUT blackbox assumptions, we

get t-privacy at a somewhat lower area and delay cost.

Lemma 9. We assume that an adversary cannot probe internal nodes of LUTs and k ≥ nt.

The number of LUTs used increases linearly with t to achieve t-privacy. In order words,

the complexity of the LUT-based t-private circuits is O(t) and the depth of this circuit is O(1).

Fig. 5.1 shows a function f mapped into a k-LUT and then transformed into t+ 1 k-LUTs

in order to make it secure.

5.2.3 Mapping into k-LUTs with limited number of inputs

Most commercial FPGAs have from 4-LUT to 6-LUT granularity. With this choice for k,

most LUTs utilize all their inputs after technology mapping. Given this practical constraint

www.manaraa.com

74

Figure 5.2: Full adder cell schemetic

on k-LUT granularity, our assumption should be changed to k < nt.

Lemma 10. We assume that an adversary cannot probe internal nodes of LUTs and k < nt.

The complexity of LUT-based t-privacy is O(t + logk t) and the depth of this circuit is

O(logk t).

5.2.4 Implementation of t-private full adder

We synthesized adders in the Ishai’s framework and in the LUT based tail-recursive model.

We used Xilinx ISE tools for the synthesis. The target device is Xilinx Virtex-5 FPGA

(XC5VFX70T-3FF1136). Fig. 5.2 shows a reference full adder. Fig. 5.3 shows a schematic

for the modified Ishai’s (t=1)-private full adder. Fig. 5.4 shows a chart comparing various

adder implementations with respect to the number of LUTs (n-bit ripple carry adder based

on Ishai’s model with t = 1, 2 and 3; and the tail-recursive LUT based model with t = 1, 2).

Fig. 5.5 shows the critical path delay for the same set of adders. The key point to note here is

that the tail-recursive design takes approximately 50% area of Ishai scheme for similar privacy.

The delay advantage of tail-recursive scheme is about 33%.

www.manaraa.com

75

Figure 5.3: (t = 1)-private full adder cell schematic

Figure 5.4: LUT costs of various t-private adders

Figure 5.5: Delay costs of various t-private adders

www.manaraa.com

76

5.3 ASIC Implementation

We introduce ASIC design implementation of t-private system using commercial EDA tools

such as Cadence’s tools and Synopsys’s tools.

5.3.1 t-private Logic synthesis

After general logic synthesis, modules with low SCA resistance are flagged by the graph

based SCA analysis. The flagged modules should be resynthesized at the logic level so that

KL divergence metric is zero or almost zero. We call this re-synthesis t-private logic synthesis

since t-private logic [Ishai et al. (2003)] will be employed. These t-private logic circuits have

SCA resistance, which means that the normalized standard deviation of t-private logic circuits

is almost zero. We will verify that these primitives of t-private logic synthesis have SCA

robustness at the physical layout level in the following subsection. If each gate is replaced with

the corresponding t-private logic circuit in such a way that AND gate is replaced with t-private

AND circuit, the area of the module increases significantly [Park and Tyagi (2012)]. In order

to reduce area, t-private XOR or NXOR are a better choice since these circuits have smaller

area than t-private AND or OR circuits. An n-variable function y = f(x0, x1, . . . , xn−1) can be

represented by

f =
∑
⊕x∗0x∗1 · · ·x∗n−1, (5.5)

where x∗i can be 1, xi or x′i and
∑
⊕ represents the EXOR sum-of-products (ESOP) [Sasao and

Fujita (1996)]. The minterms and products of Eq. (5.5) can be replaced with t-private AND

and XOR circuits, respectively.

Lemma 11. If the boolean function y = f(x0, x1, . . . , xn−1) =
∑
⊕x∗0x∗1 · · ·x∗n−1 can be synthe-

sized with t-private AND and XOR circuits, SCA effectiveness of the resulting combinational

circuit is zero.

Proof. First, consider the observability of a 2-input XOR gate c = a⊕ b.

Obc(a) = Obc(b) = Pr[fa ⊕ fa′] = 1

Obc(a, b) = Pr[(a⊕ b)⊕ (a′ ⊕ b′)] = 0.

www.manaraa.com

77

Thus, Pc(a) is equal to Pc(b) and the SCA effectiveness is zero. The observability of xi at the

primary output y is 0.5 because the observability is the multiplication of the observability of

the input at a t-private AND circuit and all the observability of the input at an XOR gate :

0.5×1×· · ·×1. The effective capacitances Cy(xi) are almost equal. Consequently, Var[Py(xi)]

is zero. This means that the combinational circuit is robust against SCA attacks.

5.3.2 Design Flow

The design flow of the ASIC design of t-private system is shown in Fig. 5.6. All design

procedures except for t-private logic synthesis is the same as the general ASIC design process.

First, cryptographic system is designed at the behavioral level using HDL language such as

Verilog or VHDL.

Second, the behavioral design is transformed into technology dependent gate level by logic syn-

thesizer such as Candence’s RTL Compiler or Synopsys’s Design Compiler with the technology

library. We call this process logic synthesis. We use RTL Compiler and OSU standard cell

library based on NCSU FreePDK 45nm process as the logic synthesizer and the technology

library, respectively. The technology library has liberty file format and the file extension of .lib

which is the semiconductor industry’s most widely supported library standard. These exist no

difference with the general design flow until the second step.

The third process is to transform the vulnerable design based on the security metrics into t-

private logic design which has robustness against the tth order side-channel attacks. We call

this procedure t-private logic synthesis. This process is divided into two sub-steps. The first

sub-step is to change each general gate into matched t-private gate in such a way that AND

gate is changed into t-private AND circuit. It is performed automatically by Perl script. The

following step is to optimize t-private logics depending on the time constraint using RTL Com-

piler. For this logic synthesis, we use our technology library including t-private logic cells such

as AND2X1t1, NAND2X1t2, XOR2X1t1 and so on. The name of the t-private logic

cells represents operation function, the number of inputs, drive strength and t parameter in

sequential order. For example, AND2X1t1 means that this cell is X1 2-input AND with t = 1.

www.manaraa.com

78

After the t-private logic synthesis, the structural Verilog file consisting of t-private logic cells

is generated.

The back-end design starts from the fourth process for the final physical layout. We use the

SOC Encouter tool from Cadence for the floorplan, place and route. The required files are our

technical library file (.lib), cell abstract information file (.lef), the structural Verilog (.v) and

delay constraint information file (.sdc), which the last two files are outputs of the previous

process. The generated layout should pass DRC and LVS and is saved as the gds file format

(.gds).

Finally, we should verify whether our implementation has security against the t−th order side-

channel attacks or not based on power simulation using Spectre analog simulator from Cadence.

5.3.3 Technology Library

In order to perform t-private logic synthesis and physical layout, our technology library

should be required. The technology library defines the cell function, area, delay and power

dissipation of each t-private logic cell. The cell definition of AND2X1t1 as liberty file format

is show in Listing 5.1. To generate our technology library, several steps should be required as

the following:

1) Draw the schematic of each t-private logic cell using Virtuoso schematic editor like Fig. 5.8.

2) Make a structural Verilog file based on the schematic like Fig. 5.15.

3) Synthesize the t-private logic cell using RTL Compiler like Fig. 5.10.

4) Generate a layout of the t-private logic cell using SOC encounter like Fig. 5.11.

5) Check DRC and LVS.

6) Extract timing and power characteristics of the t-private logic cell using Spectre Analog En-

vironment.

Since t-private logic cells are made of gates of OSU standard digital cell library, OSU stan-

dard cell library is used for logic synthesis and layout. After Step 3, generated Verilog may

be different from the structural Verilog at Step 2. Power and area can be estimated after

logic synthesis. Table 5.1 shows area, power and delay time estimation of 5 (t = 1)-private

www.manaraa.com

79

Figure 5.6: The design flow of the ASIC implementation

www.manaraa.com

80

logic cells. We generate layouts and liberty descriptions of basic 8 (t = 1)-private logic

cells (AND2X1t1, NAND2X1t1, OR2X1t1, NOR2X1t1, XOR2X1t1, XNOR2X1t1,

BUFX2t1, INVX2t1) through the above method.

Table 5.1: Area, power and delay estimation of each t-private logic cell after logic synthesis

cell Area Leakage Power (nW) Dynamic Power (nW) Delay (ps)

NAND2X1t1 31 1.19 4185.08 55

AND2X1t1 31 1.19 4112.97 55

NOR2X1t1 32 1.052 4418.91 66

OR2X1t1 32 1.052 4407.66 66

XNOR2X1t1 10 0.36 4433.56 14

XOR2X1t1 10 0.361 4439.20 13

5.3.4 Verification of robustness

After finishing layout of basic t-private logics, we also verify the robustness against power

analysis attacks. For the verification, we measured the power and current of logic cells using

Spectre Analog Environment with the analog extracted view of the cell which includes all par-

asitic capacitances. The power consumption of logic gates in general standard cell libraries

depends on transitions of the output. For example, the power consumption of NAND2X1

of OSU standard cells varies according to how the output is changed. When transition of the

output occurs, power of the supply is dissipated significantly compared to the power consump-

tion in case of no transition. It also has difference between the transition from 0 to 1 and

the transition from 1 to 0. This NAND2X1 does not have robustness against power analysis

attacks since the power consumption depends on processed data.

Basic t-private logic cells are simulated for all possible input pattern and the corresponding

power and peak current were measured in each case. Two input t-private logics except for XOR

and XNOR has 42(t+1)+r possible input patterns where r is equal to dt+1e
2 and the number of

required random bits for perfect secrecy of internal nodes. Since t-private XOR and XNOR

does not require additional random bits for the perfect secrecy, the number of all possible input

pattern is 42(t+1). The measured powers and peak currents were classified according to the

www.manaraa.com

81

Listing 5.1: A sample example liberty description of AND2X1t1

c e l l (AND2X1t1) {
area : 3168 ;

c e l l l e a k a g e p o w e r : 1 . 1 9 ;
pin (A0) {

d i r e c t i o n : input ;
capac i tance : 0 . 021674 ;
r i s e c a p a c i t a n c e : 0 . 021579 ;
f a l l c a p a c i t a n c e : 0 . 021674 ;

}
pin (A1) {

. . .
}
. . .
pin (Y0) {

d i r e c t i o n : output ;
capac i tance : 0 ;
r i s e c a p a c i t a n c e : 0 ;
f a l l c a p a c i t a n c e : 0 ;
max capacitance : 0 . 924889 ;
func t i on : ”(A0∗B0 ˆ R ˆ A1∗B1) ” ;
t iming () {

r e l a t e d p i n : ”A0” ;
t im ing s en s e : p o s i t i v e u n a t e ;
c e l l r i s e (de lay template 5x5) {

index 1 (” 0 . 0 5 , 0 . 1 , 0 . 2 , 0 . 6 , 1 . 2 ”) ;
index 2 (” 0 . 0 6 , 0 . 18 , 0 . 42 , 0 . 6 , 1 . 2 ”) ;
va lue s (\

. . .
}
r i s e t r a n s i t i o n (de lay template 5x5) {

. . .
}
c e l l f a l l (de lay template 5x5) {

. . .
}
f a l l t r a n s i t i o n (de lay template 5x5) {

. . .
}

}
t iming () {

r e l a t e d p i n : ”A1” ;
. . .

}
i n t e rna l power () {

r e l a t e d p i n : ”A0” ;
r i s e powe r (energy template 5x5) {

. . .
}
f a l l p o w e r (energy template 5x5) {

. . .
}

}
. . .

}

www.manaraa.com

82

Figure 5.8 Schematic of AND2X1t1

Figure 5.9 Verilog description of AND2X1t1

Figure 5.10 Synthesized logic design

Figure 5.11 Layout of AND2X1t1

Figure 5.12: The steps to create AND2X1t1

www.manaraa.com

83

Figure 5.14 Peak currents of NAND2X1t1 Figure 5.15 Powers of NAND2X1t1

Figure 5.16: Distribution of powers and peak currents of NAND2X1t1

output transition (0 → 0, 0 → 1, 1 → 0 and 1 → 1) and the powers and peak currents in each

group were averaged. If there is no dependency of power consumption on the input pattern,

the logic gate has resistance against power analysis attacks. In other words, if it is difficult to

distinguish averaged powers and peak powers of each group, the logic gate is robust. Table 5.2

shows the averaged power consumption, peak current and the number of cases of NAND2X1t1

in each group according to output transition. The powers and peak currents are almost equal

so that it is difficult to distinguish. We utilize the ratio of standard deviation(σ) to average(µ)

called the coefficient of variation in order to quantify the dependency or robustness. The

larger the value the larger dependency on output transition(or input pattern) or the smaller

robustness against power analysis attacks. The coefficient of variation of NAND2X1t1 is

too smaller than the coefficient of variation of NAND2X1. Fig. 5.16 shows the distribution

of power consumptions and peak currents of NAND2X1t1. Table 5.3 5.4 5.5 5.6 5.7 show

power consumption and peak current of AND2X1t1,NOR2X1t1,OR2X1t1,XOR2X1t1

and XNOR2X1t1, respectively.

www.manaraa.com

84

Table 5.2: Power consumption of NAND2X1t1 (45 nm process)

Transition of output Power consumption (nW) Peak Current (mA) Number of Transitions

0→ 0 4194.55 0.719 64

0→ 1 4173.27 0.745 192

1→ 0 4194.40 0.668 192

1→ 1 4178.08 0.701 576

Average(µ) 4185.08 0.709 -

Standard deviation(σ) 121.73 0.001 -
σ
µ 0.029 0.0014 -

Table 5.3: Power consumption of AND2X1t1 (45 nm process)

Transition of output Power consumption (nW) Peak Current (mA) Number of Transitions

0→ 0 4209.30 0.717 576

0→ 1 4230.54 0.657 192

1→ 0 4207.52 0.725 192

1→ 1 4225.71 0.701 64

Average(µ) 4215.76 0.699 -

Standard deviation(σ) 77.15 0.0009 -
σ
µ 0.018 0.0013 -

5.4 Example : SBOX design

We implemented the AES S-Box through our proposed SCA-secure design methodology for

a preliminary validation. The AES S-Box operation of the AES encryption or decryption in

the first round or last round is especially vulnerable to DPA attacks [Mangard et al. (2005),

Prouff and Rivain (2007)]. The vulnerable AES S-Box should be synthesized with t-private

primitives into a secure layout with our design flow. As a baseline, insecure AES S-Box based

Figure 5.17: Layout of the secure AES S-Box

www.manaraa.com

85

Table 5.4: Power consumptions of NOR2X1t1 (45 nm process)

Transition of output Power consumption (nW) Peak Current (mA) Number of Transitions

0→ 0 4807.01 0.711 576

0→ 1 4836.72 0.709 192

1→ 0 4786.24 0.699 192

1→ 1 4864.25 0.712 64

Average(µ) 4823.55 0.708 -

Standard deviation(σ) 34.13 0.0059 -
σ
µ 0.007 0.008 -

Table 5.5: Power consumption of OR2X1t1 (45 nm process)

Transition of output Power consumption (nW) Peak Current (mA) Number of Transitions

0→ 0 4894.25 0.703 64

0→ 1 4786.24 0.711 192

1→ 0 4836.72 0.698 192

1→ 1 4807.01 0.722 576

Average(µ) 4831.06 0.709 -

Standard deviation(σ) 46.95 0.104 -
σ
µ 0.009 0.014 -

on composite finite field proposed by Satoh el al. [Satoh et al. (2001)] is implemented. It is

re-synthesized with t-private re-synthesis using RTL Compiler. After t-private synthesis, the

cell area and critical path delay are compared to the reference baseline design. The cell area

increases by a factor 5.77 and and delay goes up by a factor 1.69 as compared to the reference

design. The result of the layout shows that the die size of the secure S-Box is 4.37 times larger.

But the DPA security metric (σ/µ) is reduced by 59% and it has robustness against the first

order probing attack. Table 5.8 shows the comparison of the secure and insecure S-box designs.

Fig. 5.17 shows the layout of the secure AES S-Box.

5.5 Conclusion

In this chapter, SCA resistant hardware implementation for FPGA and ASIC design has

been proposed using t-private logic circuits. The standard cell library including t-private logic

circuits can be used for logic synthesis, place & route and physical layout. Vulnerable modules

to be flagged by SCA security metrics should be re-synthesized with t-private logic cells. After

www.manaraa.com

86

Table 5.6: Power consumption of XOR2X1t1 (45 nm process)

Transition of output Power consumption (nW) Peak Current (mA) Number of Transitions

0→ 0 1078.51 0.358 64

0→ 1 1077.23 0.339 64

1→ 0 1076.82 0.327 64

1→ 1 1077.46 0.379 64

Average(µ) 1077.51 0.351 -

Standard deviation(σ) 0.72 0.023 -
σ
µ 0.0007 0.065 -

Table 5.7: Power consumption of XNOR2X1t1 (45 nm process)

Transition of output Power consumption (nW) Peak Current (mA) Number of Transitions

0→ 0 997.12 0.388 64

0→ 1 997.14 0.375 64

1→ 0 997.62 0.328 64

1→ 1 998.33 0.370 64

Average(µ) 997.55 0.365 -

Standard deviation(σ) 0.567 0.026 -
σ
µ 0.0005 0.071 -

the physical layout, SCA vulnerability of the hardware implementation can be verified by

security metrics and simulating attacks.

Table 5.8: Comparison of insecure and secure S-Box

cell area(µm2) delay(ns) σ/µ

insecure 332.23 0.427 0.48

secure 1919.96 0.723 0.07

www.manaraa.com

87

CHAPTER 6. t-PRIVATE SYSTEMS: UNIFIED PRIVATE MEMORIES

AND COMPUTATION

6.1 Introduction

The goal of countermeasures against side channel attacks is to significantly reduce or remove

the correlation between side channel leakage and the data or state processed by the compu-

tational system. A representative approach to counteract side channel attacks is to mask

intermediate values with randomized bits at the gate level. Ishai et al. [Ishai et al. (2003)]

proposed t-private circuit using such a masking method. They assume that an adversary can

probe or observe up to t nodes in the circuit. Their assumption is that the adversary is perfect,

and hence able to probe the circuit state of the logic with 100% certainty. The Ishai’s t-private

circuits need at least t random bits to ensure zero correlation between t probed nodes each

clock cycle. This makes information loss to the adversary equal to 0.

t-private logic only targets the privacy of computation. However, cryptographic systems

also include some memory, particularly, memories that hold private keys which are typically

Read Only Memory (ROM). Many secret keys associated with a cryptographic system are

stored in ROMs. For instance, hundreds of 1024-bit RSA private keys are not uncommon for a

Trusted Platform Module (TPM) [Group (2013)]. ROMs are especially vulnerable to t-probing

adversary of Ishai since their state does not change over time unlike computation. Moreover,

these keys in memory can be targeted directly by physical attacks [Samyde et al. (2002)]. The

adversary with physical access to the secret key part of the chip can succeed even if power has

been turned off. The physical access based attacks slice the silicon until individual transistors

are exposed by a Focused Ion Beam (FIB). An electron microscope is used to examine the

silicon. Halderman et al. [Halderman et al. (2008)] proposed “cold-boot attack” which is a

www.manaraa.com

88

method to extract a significant fraction of data stored in a powered-off memory (e. g. DRAM)

by cooling the chip to around −50◦C. Valamehr et al. [Valamehr et al. (2012)] developed

several masking methods to prevent such memory attacks. The simplest of them is Ishai’s

[Ishai et al. (2003)] t-private coding applied to memory resident data. The key idea is that

the secret key (xi) does not need to be stored in the memory in its original form. Instead, a

t+1-tuple [r1, r2, . . . , rt, xi⊕r1⊕· · ·⊕rt] is stored. We call this memory masking with t random

bits a t-private memory. An adversary must learn all the t random bits and the encoded bit in

order to reveal even a single bit of the secret key. The adversary attack model for ROM is based

on the persistent physical access attack - not the transient probing attack for computational

logic. The memory attack has statistical observation limitations. Therefore, Valamehr et al.

[Valamehr et al. (2012)] assume that it succeeds only with probability p for each bit. Unlike

Ishai’s perfect secrecy analysis model, they define the success probability Psucc of this memory

attack as a new figure of merit. It captures the event that at least one bit of the secret key has

been learned. Even though a successful outcome of Psucc event does not break a cryptographic

system, the possible key space can be reduced considerably when other side channel attacks

are combined.

Practical computing systems consist of both memory and computational logic components.

In order to build a t-private system, we need both a t-private memory and t-private logic that

integrate seamlessly. Ishai’s t-private scheme is not the most efficient one when applied to mem-

ory protection. Most of Valamehr’s memory protection schemes [Valamehr et al. (2012)] are

not computable in the sense that a computational logic schema does not exist within the coded

domain (unlike Ishai scheme). These stored coded keys have to be decoded first before being

used for computation, hence exposing them to probing attacks. This is a big weakness. In this

paper, we develop a unified computable coding scheme applicable to both memory and compu-

tation logic. This scheme is more efficient than Valamehr’s schemes in their memory analysis

framework. It also shows zero information loss in the Ishai’s analysis framework. We believe

that our proposed coding scheme is an ideal candidate to build t-private systems unifying the

memory and computing logic. In summary, this chapter makes the following contributions:

www.manaraa.com

89

1) We analyze the storage overhead and the success probability (Psucc) of various t-private

memory schemas within a unified framework that is easier to understand than Valamehr’s.

However, it may overestimate Psucc. We also quantify and describe a trade-off between these

two attributes – storage overhead and Psucc.

2) We introduce a new notion of computable encoding method for t-private memories to cap-

ture the schemes which can compute with the encoded keys using a complementary t-private

logic. We also propose a new, computable, t-private, inspection resistant memory with a

corresponding computable encoding method. This new approach requires new t-private logic

combinational gates which are more efficient than Ishai’s [Ishai et al. (2003)] t-private circuits

in their use of random bits without any loss of privacy.

3) We propose new combinational logic circuits suitable for our new memory scheme.

We define our adversary model and the notation (variables/parameters used) in Section 6.2.

Our new more general analysis of t-private memories is presented in Section 6.3. Section 6.4

develops our proposed t-private memory scheme. Logic schema for our proposed memory is

presented in Section 6.5. Hardware implementation results are presented in Section 6.6. Finally,

Section 6.7 concludes the paper.

6.2 Assumptions and Notation

We assume that the memory leaks information in contrast to Micali’s paper [Micali and

Reyzin (2003)] in which they assume that only computation leaks information. An adversary

conducts experiments to reveal the bits stored in the memory with a measurement apparatus.

Let L be the leakage function selected by an adversary. The value of leakage of any bit xi

in the memory M is converted to the finite field GF (2) based on the ability of an adversary:

f : L(xi)→ {0, 1} for xi ∈M.

We assume that an adversary has limited capability to learn any memory resident bit exactly

due to noisy measurement apparatus. Hence, we define the limited leakage probability of a bit

as Pr[f(L(xi)) = xi] = p ∀xi ∈M.

www.manaraa.com

90

Table 6.1: Variables used in this chapter

k key length

p leakage probability for 1 bit

Psucc probability of successful attack

ri random bit

xi one-bit secret key

t the number of random bits

tp the number of probing nodes per clock cycle

n the number of keys

c the number of bits to be stored per key

T random bit matrix

Tij the ith row and jth column element of T

~a = [a1, . . . , at] a binary vector

x̄ complement of x

∧ bit-wise AND operation

This p is the characteristic of the memory (encoding) schema. If adversary’s target is

computational circuit C, our assumption is the same as Ishai’s adversary model [Ishai et al.

(2003)]. In other words, an adversary can probe tp nodes every cycle: Pr[f(L(yi)) = yi] =

1 ∀yi ∈ Y, Y ⊂ C, |Y | = tp.

A memory attack is a set of such experiments that are possibly adaptively controlled. We

assume that the goal of a memory attack is to reveal at least one bit in the memory with

probability 1. Success probability of a memory attack captures this goal.

Definition 18 (success probability). We define the success probability Psucc of a memory attack

as the probability that at least one bit of the original secret key has been revealed.

Memory may store multiple keys with the same key length k. The parameters/variables of

the memory schema, adversary experiments, and memory attacks are defined in Table 6.1. If

not otherwise stated, these variables hold for the rest of the chapter.

www.manaraa.com

91

6.3 t-Private Memory: Schemas, Architecture, and Analysis

The k raw bits of a key [xk, xk−1, . . . , x1] can be stored in memory in many ways. The

t-privacy schemes could conceivably be transistor level schemes. However, encoding schemes

applied at the write-port of a memory are more obvious and effective. A memory schema is a

pair of encoding & decoding functions for memory. The base case is to do nothing - just store

and retrieve the raw bits - with a schema of the identity function. All the following memory

schemas except for t-private system are from Valamehr et al. [Valamehr et al. (2012)]. The

unified analysis is ours.

A bit xi of the secret key can be hidden by creating t+1 random shares using t random bits

[r1, r2, . . . , rt, xi⊕ r1⊕ r2⊕ · · · ⊕ rt] where ri’s are random bits. The t random bits constitute t

shares. The (t+ 1)st share is derived by an XOR of the t random bits and the original bit xi.

The easiest memory architecture for the secrecy is to store all the t+ 1 share bits of a raw

bit of the secret key. Therefore the total number of stored bits for a secret key of length k is

k(t+ 1). In this schema, each key bit uses a different set of t random bits. The set of random

bits can be re-used or shared between various key bits. Depending on this reuse and sharing

of random bits, the storage overhead and the success probability of the memory attack can

vary. There are four memory schemes in [Valamehr et al. (2012)] which will be analyzed in

this section (all except the dynamic matrix scheme using hash function). Fig. 6.6 shows these

architectural memory schemes.

6.3.1 Original memory scheme without secrecy

Original memory refers to raw memory without any protection against memory attacks.

The total number of bits stored for the n secret keys with key length k is nk. This value is

the storage reference/baseline. We define the storage overhead as the ratio of the number of

bits used for the secret keys storage to the storage reference. The success probability Psucc of

memory attacks is 1− (1− p)k, where (1− p)k is the probability of the adversary experiments

failing on all of the k key bits.

www.manaraa.com

92

Figure 6.2 The original memory scheme Figure 6.3 The t-private memory scheme

Figure 6.4 The t-private memory scheme
with a random matrix Figure 6.5 The hybrid memory scheme

Figure 6.6: 4 architectural memory schemes

6.3.2 t-private memory scheme

Each bit xi of the secret key is represented by t random bits and the encoded bit ei =

xi ⊕ r1 ⊕ . . . ⊕ rt which are stored in the memory. Each key bit uses its own set of t random

bits. Total number of bits stored for n secret keys is cn = (t+ 1)k ·n and therefore the storage

overhead is t+ 1. The success probability is

Psucc = 1− (1− p′)k (6.1)

where p′ = pt+1, which is the probability that an adversary learns t random bits and the

encoded bit to reveal xi. p
′ is less than p since 0 ≤ p ≤ 1. As noted earlier, this scheme mirrors

the t-private circuits introduced in Ishai et al. [Ishai et al. (2003)].

6.3.3 t-private memory scheme using a random matrix T

The straightforward t-private memory requires t random bits per key bit. This may be

an unreasonably large random bit overhead. This scheme attempts to reduce the number of

www.manaraa.com

93

random bits needed for the entire schema. Randomly selected ti random bits Ri = {rj |rj ∈

R, |Ri| = ti} from a set of t random bits R = {r1, r2, . . . , rt} per key bit are used to encode

each bit xi of the secret key. The encoded bit ei of xi is xi⊕
[⊕

rj∈Ri rj

]
. The position/index j

of randomly selected ti random bits are stored in a fixed t× k random matrix T. For example,

if r1, r2, r5 are randomly selected for encoding x1, the first column T1 of the random matrix T

is [1, 1, 0, 0, 1, 0, ...]T . The random matrix T is used for decoding xi = ei ⊕
[⊕t

j=1 rj · Tji
]
. In

this case, c is t+ k and total number of bits stored for n secret keys including a t× k random

matrix table is equal to (t+ k)n+ tk. The storage overhead is

(t+ k)n+ tk

nk
= 1 + t

(
1

n
+

1

k

)
.

In order to reveal a single secret key-bit xi, all of the t random bits and the ith column Ti of

the random matrix T should be required:

xi = ei ⊕

 t⊕
j=1

rj · Tji

 , where rj ∈ R, Tji ∈ Ti.

The failing cases of our memory attack scenario are divided into two cases. The first case is

that an adversary does not know all the random bits. The second case corresponds to the case

that an adversary does not know the ith column of the random matrix T even though all the

random bits are known. Note that we assume that the leakage probability of the matrix T’s

random bit is also p, which is independently distributed. Thus, the failure probability Pfail of

this attack is equal to the sum of the probabilities of two cases . The success probability Psucc

is given by the following equations:

Psucc = 1− Pfail = 1− { 1− pt︸ ︷︷ ︸
the first case’s probability

+ pt(1− pt+1)k︸ ︷︷ ︸
the second case’s probability

}

= pt{1− (1− pt+1)k}. (6.2)

Compared with Eq (6.1), the success probability of the t-private memory scheme using a random

matrix is pt factor less than the success probability of the t-private scheme for the same t.

www.manaraa.com

94

6.3.4 Hybrid memory scheme

The hybrid scheme is a combination of t-private memory scheme and t-private memory

scheme using a fixed random matrix. This scheme is devised in [Valamehr et al. (2012)] in

order to minimize psucc per random bit. Intuitively, it uses a few of the t bits to reduce p with

the classical t-private scheme. The rest of the t private bits are used in a random matrix schema.

The details of the hybrid schema and analysis in [Valamehr et al. (2012)] are ambiguous. In

the following, we have chosen a version of many possible designs for the hybrid schema.

The number of random bits ti to encode each secret key bit xi with the t-private scheme is a

parameter individualized to each xi. We let the set of the random bits be R′i = {ri1, ri2, . . . , riti}.

Another set of random bits per secret key R = {r1, r2, . . . , rt} is required for the encoding

method with a t× k random matrix T. Each secret key bit xi can be encoded by the following

equation:

ei = xi ⊕ {ri1 ⊕ · · · ⊕ riti} ⊕

⊕
rj∈Ri

rj

 for 1 ≤ i ≤ k

where Ri is a randomly selected subset of R = {r′1, . . . , r′t}.

The storage overhead is

n
[
t+
∑k

i=1(ti + 1)
]

+ tk

nk
= 1 + t

(
1

n
+

1

k

)
+

1

k

k∑
i=1

ti.

The failing cases for an adversary are also divided into two cases as in the t-private scheme

using a random matrix. The first case is that an adversary does not know all of the t random

bits {r1, r2, . . . , rt} to encode with the random matrix. The second case is that an adversary

does not know the ith column of the random matrix T and all ti random bits for the t-private

encoding even though (conditioned on) all the random bits {r1, r2, . . . , rt} are known. The

success probability Psucc is

Psucc = 1− Pfail = 1− { 1− pt︸ ︷︷ ︸
the first case’s probability

+ pt
k∏
i=1

(1− pti+t+1)︸ ︷︷ ︸
the second case’s probability

}

= pt

[
1−

k∏
i=1

(1− pti+t+1)

]
. (6.3)

www.manaraa.com

95

The t-private memory scheme with a random matrix is the special case of this hybrid memory

scheme when all ti for 1 ≤ i ≤ k is zero. Compared to the t-private memory scheme with a

random matrix when both t is equal and all ti’s are the same, the success probability of the

hybrid scheme decreases slightly since pt+1 in Eq. (6.2) is larger than pti+t+1 Eq. (6.3). But

the storage overhead increases by ti.

6.3.5 Comparison

Table 6.2 shows the storage overhead and the success probability of the 4 architectural

schemes. We assume that the key length k is 128 bits and the number of secret keys n is 10

and the leakage probability of each bit p is 0.9. Fig. 6.10 shows the storage overhead and the

success probability of the t-private scheme, the t-private scheme with a random matrix and the

hybrid memory scheme with ti = 10 parametrized by the number of random bits t. Compared

to the t-private memory scheme with a random matrix, the hybrid memory scheme does not

have any advantage since the storage overhead is larger without a significant reduction in the

success probability. In the following sections, our proposed memory scheme will be compared

to the t-private memory scheme with a random matrix.

6.4 New Approach

Note that all the encoding schemes in Section 6.3 except for the classical t-private memory

scheme require the stored keys to be decoded before they can be used in a cryptographic

computation (such as AES encryption). A more secure and private system can be designed

if the computation with the key is also implemented as private logic (along the lines of Ishai

Table 6.2: The storage overhead and the success probability of the 4 architectural schemes

Original t-private t-private with T Hybrid

Storage overhead 1 1 + t 1 + t
(

1
n + 1

k

)
1 + t

(
1
n + 1

k

)
+ 1

k

∑k
i=1 ti

Psucc 1− (1− p)k 1− (1− pt+1)k pt{1− (1− pt+1)k} pt
[
1−

∏k
i=1(1− pti+t+1)

]

www.manaraa.com

96

Figure 6.8 The success probability Figure 6.9 The storage overhead

Figure 6.10: Comparison between t-private scheme, t-private scheme with a random matrix

and the hybrid scheme when p = 0.9, k = 128, n = 10, ti = 10

Figure 6.11: t-Private: (Left) Encoding; (Right) Decoding

www.manaraa.com

97

scheme [Ishai et al. (2003)]). A memory encoding scheme that does not require the key to be

decoded so that the key can participate in a computation implemented with private logic is

called a computable encoding or schema. In such cases, a private logic family consistent with

the memory encoding must exist. In a memory schema that is not computable, the decoded

key can be attacked dynamically in flight. The only attacks that a non-computable memory

schema prevents against are static memory attacks such as chip slicing based observation of

transistor fatigue.

t-private encoding is obviously a computable schema. The t-private storage can be used

directly in the t-private encryption/decryption implementation without additional decoding.

Hence, the t-private memory scheme should be selected in order to prevent the adversary from

attacking the raw key at the decoding step even though it does not have the best success

probability and storage overhead tradeoff.

Basic Encoding Scheme: t-private implementations require many random bits - they

do not share/reuse random bits (unlike the random matrix schema). They pose a t2 factor

area overhead and a factor t delay overhead. Our goal was to come up with a computable

version of random matrix method. Alternately, we need a scheme that reuses random bits

in a t-private logic implementation. We propose the computable and t-private encoding with

these properties. We could use addition like invertible function with the t-private masking

method to reduce the success probability. Note that such a function is not commutative in the

bits of its operand. In other words, unlike the t random bits in Ishai’s t-privacy schema, the

order of these bits within the coding operand matters. Each ordering of t random bits gives

a different seed and hence a different encoding. This allows any permutation of t random bits

to give a different random seed from the encoding perspective. This results in a possibility of

t!/(a!b!) ≈ t!/((t/2)! ∗ (t/2)!) reuses of t random bits, where a is the number of 1’s and b is the

number of 0’s of the t random bits.

Fig. 6.11 shows the basic idea. We add two t + 1-bit words for encoding. One operand is

derived by concatenating the bit to be encoded x with t random bits rt, rt−1, . . . r1. This word

is added to another random constant c (either one c per chip or one c per x). Note that different

www.manaraa.com

98

permutations of the t random bits rit , rit−1 , . . . ri1 lead to different encoded result when added

to c. Decoding consists of simply subtracting c from the encoded word et+1et . . . e1. The most

significant bit of the decoded word is x.

Refined Encoding Schema: The basic encoding schema has some flaws that expose the

bit x when forming complex entangling gates such as AND and OR as discussed in Section 6.5.

In order to fix that, instead of x at the MSB of arithmetic word with random bits, we use the

Ishai code x⊕ rt ⊕ · · · ⊕ r1.

We define the computable and t-private encoding for xi (bit to be coded) as follows:

~ei = Encode(xi) = [xi ⊕ rit ⊕ rit−1 ⊕ · · · ⊕ ri1, ~ri] + ~ci

where ~ri and ~ci are vectors/words of t random bits [rit, r
i
t−1, . . . , r

i
1] and constant bits [cit+1, c

i
t,

. . . , ci1] respectively. Note that this schema uses a constant word per xi. We form an arithmetic

word comprising of t random bits and xi. By placing xi at the most significant end we allow all

the t random bits to effect its encoding. A simpler encoding would have added [xi, rt, . . . , r1]

to a constant vector per chip or per computation session. Note that since the constant vector

~c is constant over longer periods - entire computation session, entire boot-up phase, to be

conservative, it may not contribute to the entropy of encoding. We must assume that the

adversary knows such a persistent ~c.

The decoding can then be done as follows:

~di = Decode(~ei) = ~ei − ~ci = [xi ⊕ rit ⊕ · · · ⊕ ri1, rit, . . . , ri1].

Most significant bit of ~di is xi⊕rit⊕· · ·⊕ri1. The decoded vector ~di can be directly connected to t-

private encryption/decryption logic. This computable and t-private encoding method does not

reveal the original key bit after this decoding process. Algorithm 2 represents our computable

t-private encoding/decoding method. Note that this algorithm creates all m reuses of each bit

within the encoding of the same key. Such a localized reuse may not be optimal in practice. It

is presented in the algorithm for its simplicity. In practice, for CAD, we will likely incorporate

global randomized reuse. Also note that we have used a random instance of a permutation of t

www.manaraa.com

99

bits πr picked uniformly from t! space. πr(i) = j maps the ith bit position to jth bit position.

Fig. 6.12 shows our proposed computable and t-private memory scheme.

Since t + 1 encoded bits per key bit are stored in the memory in this scheme, the storage

overhead is

nk(t+ 1)

nk
= t+ 1.

Algorithm 2 Computable t-private memory encoding/decoding scheme

Encoding

Input : A k-bit secret key ~x = [xk, xk−1, . . . , xi, . . . , x1]; g = dk/me distinct t-bit ran-

dom vectors ~r0 = [r0
t , r

0
t−1, . . . , r

0
1], ~r1 = [r1

t , r
1
t−1, . . . , r

1
1], . . . , ~rg−1 = [rg−1

t , rg−1
t−1 , . . . , r

g−1
1];

constant vector (per chip or per computation session) ~c = [ct+1, ct, . . . , c1]

Output : Encoded secret key bit vectors, ~ei for i = 1, 2, . . . , k such that e(~x) = ~ek ~ek−1 . . . ~e1

for i = 1→ k do

j ← k % g

Key bit xi is XORed with the t random bits in jth random vector : yi = xi⊕ rjt ⊕ r
j
t−1⊕

· · · ⊕ rj1
Concatenate XORed bit yi with a randomly picked permutation of t bits πr : yi||πr(~rj)=[

yi, r
j

π−1
r (t)

, rj
π−1
r (t−1)

, . . . , rj
π−1
r (1)

]
Add constant vector ~c : ~ei =

[
yi, r

j

π−1
r (t)

, rj
π−1
r (t−1)

, . . . , rj
π−1
r (1)

]
+ ~c

end for

Decoding

Input : Encoded secret key vectors, ~ei for i = 1, 2, . . . , k; constant vector ~c

Output : Decoded secret key vectors, ~di = [yi, rt, . . . , r1] for i = 1, 2, . . . , k

for i = 1→ k do

Subtract constant vector ~c : ~di = [eit+1, e
i
t, . . . , e

i
1] − ~c = [xi ⊕ rjt ⊕ rjt−1 ⊕ · · · ⊕

rj1, r
j
t , r

j
t−1, . . . , r

j
1] for j = k % g

end for

Constant vector ~c storage/routing: The constant vector ~ci need not to be stored in

memory. Its lifetime is only from the producer gate to the consumer gate. It can be hardwired in

the routing of wires from the producer gate to the consumer gate. For a per chip or per session

constant ~c, similar hardwiring will work with a bootup or session-startup initialization step.

For a random choice of ~ci per xi, we assume that the adversary learns each bit with probability

0.5 randomly. This requires the adversary to conduct all possible 2t+1 ~ci experiments to reveal

www.manaraa.com

100

Figure 6.12: The proposed memory scheme

a key bit. The success probability Psucc then is

1

2t+1
(1− (1− pt+1)k). (6.4)

However, since the goal of this paper is to save on random bits, henceforth in this paper, we

assume that ~c is a constant per chip or per computation session. Furthermore, the adversary

knows ~c. Hence we cannot use the entropy of ~c in our security analysis.

(1− (1− pt+1)k). (6.5)

If we assume instead the memory attack model with probability p to reveal each bit of ~ci

then the success probability is Psucc = pt+1× (1− (1−pt+1)k). Similarly, if we assume that the

constant vector is fixed for the chip design or for each boot-up session, we give the benefit of

doubt to the adversary leading to Psucc = (1− (1− pt+1)k). Effectively, this gives us two types

of t-private systems: (1) ones with constant ~c with higher success probability but with lower

number of random bits requirement (which is the one analyzed in the following), (2) constant

~ci per xi with lower success probability at the cost of higher number of random bits.

When a permutation of a vector of t random bits is reused upto m times for encoding

other information/key bits, we need to consider two cases for revealing the coded bits. In

the earlier analysis, we have assumed probability p for slicing attack to succeed at revealing a

www.manaraa.com

101

Figure 6.13: The success probability according to m reused random bits when p = 0.9, t = 91

specific coded bit bi. The other possibility due to reuse is that another bit al might be revealed

through slicing attack with probability p, and it is reused at the bit position of bi. Eq. (6.5)

should be changed into the following equation to account for such reuse:

Psucc reuse =
(

1− (1− (p+ (1− p)q)t+1)k
)

(6.6)

where q is the probability that a reused bit al is revealed through slicing attack and is routed

to the bit under consideration bi.

q = 1−
(

1− p

t

)m
. (6.7)

In Eq. (6.7), pt is the probability that a reused bit bi is revealed by slicing attack of another

bit al. It results from the leakage/slicing attack success probability p of another bit al and the

probability that the reused bit al is routed to bi’s position. Note that a random permutation

πr maps a bit position i to another bit position j with probability 1/t over all t! permutations.

When slicing memory inspection of a bit fails with probability (1 − p), the event that a reuse

might reveal needs to be considered resulting in the success probability Psucc reuse to increase

by the factor of (1− p)q.

Fig. 6.13 shows the success probability parametrized by reuse factor m when p is 0.9 and

t is 91. The success probability is 0.1 when the reuse factor m is 30. For m = 86, the

success probability goes up to 0.9. Fig. 6.17 shows the success probability of our proposed

www.manaraa.com

102

Figure 6.15 The success probability
Figure 6.16 The number of random
bits(t) when Psucc = 0.0078

Figure 6.17: Performance comparison between proposed scheme and t-private schemes

memory scheme and t-private schemes. Our proposed schema requires only 5 random bits for

Psucc = 0.0078 as in Fig. 6.17.(b).

Now let us consider the complexity of the t + 1-bit ripple carry adders used for encoding

and decoding in terms of number of logic gates. Since one of the adder operands is a constant,

a full adder bit-slice design can be made simpler than the typical full adder. If a constant bit

b0 is 0, the carry-out bit c1 is a0c0 where a0 and c0 is an input and a carry-in bit, respectively.

The sum bit s0 is a0 ⊕ c0. If a constant bit b0 is 1, the carry-out bit c1 is a0 + c0 and the sum

bit s0 is (a0 ⊕ c0)′. Only 2 logic gates are needed for a specialized full adder leading to total

number of logic gates for the t+ 1-bit adder as 2(t+ 1).

6.5 New Computable And t-private Logic Schema And Gates

Consider an inverter y = x̄. If x is encoded with our schema, the incoming (t + 1)-tuple

represents the encoding (x, ~rx, ~cx). The inverter needs to recode the output, however, with

respect to the vector (y, ~ry, ~cy). This will require first decoding the incoming (t+ 1)-tuple and

then recoding it. Had we used the basic encoding schema, this would have revealed x in the

open temporarily, open to a probing attack. No bit xi should be in-flight in the raw form even

www.manaraa.com

103

momentarily creating a weak link. We overcome this by using xi ⊕ ri1 ⊕ ri2 ⊕ · · · ⊕ rit as MSB

in addition.

With this scheme, the MSB of the decoded vector ~di = [xi ⊕ rit ⊕ · · · ⊕ ri1, r
i
t, . . . , r

i
1] is

identical to Ishai encoding of private circuits [Ishai et al. (2003)], and hence can be connected

to Ishai’s t-private combinational logic gates. The classical t-private scheme has t2 area and

t time overhead. We only save on the random bits by adopting this approach. We however

propose a more efficient combinational logic using the decoded vectors which have the same

functionality as the traditional logic operation with lower overhead.

6.5.1 AND operation

Let two encoded bit vectors be ~e1 = [x1⊕r1
t⊕· · ·⊕r1

1, ~r1]+~c1 and ~e2 = [x2⊕r2
t⊕· · ·⊕r2

1, ~r2]+~c2

from the memory. They are decoded by the decoder, which are denoted by ~d1 and ~d2. First,

consider the simple case in which t is 1. Two decoded bit vectors are ~d1 = [x1 ⊕ r1, r1] and

~d2 = [x2 ⊕ r′1, r′1]. The result of the AND operation should be [x1 · x2 ⊕ r′′1 , r′′1]. How can we

obtain the result and r′′1 ? Let us perform the following computation:

~d1 ∧ ~d2 = [(x1 ⊕ r1) · (x2 ⊕ r′1), r1 · r′1]

= [x1 · x2 ⊕ r1 · x2 ⊕ x1 · r′1 ⊕ r1 · r′1, r1 · r′1]

x1 ·x2⊕r1 ·x2⊕x1 ·r′1⊕r1 ·r′1 in the above equation should be changed into x1 ·x2⊕r1 ·r′1 in order

to obtain desired result and thus additional computations are required to remove r1 ·x2⊕x1 ·r′1.

We define the AND operation in this case (t = 1) as the following equations:

AND(~d1, ~d2) = [x1 ⊕ r1, r1] AND [x2 ⊕ r′1, r′1]

= [(x1 ⊕ r1) · (x2 ⊕ r′1)⊕(x1 ⊕ r1) · r′1 ⊕ (x2 ⊕ r′1) · r1︸ ︷︷ ︸
additional computations

, r1 · r′1]

= [x1 · x2 ⊕ r′′1 , r′′1]

where r′′1 is equal to r1 · r′1.

Let us now increase the value of t to develop our intuition. Two decoded vectors are

~d1 = [x1 ⊕
⊕
rj , ~r] and ~d2 = [x2 ⊕

⊕
r′j ,

~r′]. In this case, the AND operation is equal to the

www.manaraa.com

104

following equation:

AND(~d1, ~d2) = [x1 ⊕
⊕

rj , ~r] AND [x2 ⊕
⊕

r′j ,
~r′]

= [(x1 ⊕
⊕

rj) · (x2 ⊕
⊕

r′j)⊕
{

(x1 ⊕
⊕

rj) · (
⊕

r′j)
}
⊕
{

(x2 ⊕
⊕

r′j) · (
⊕

rj)
}

︸ ︷︷ ︸
additional computations (6 operations)

,

(
⊕

r′j) · ~r] (6.8)

=
[
x1 · x2 ⊕

{
(
⊕

rj) · (
⊕

r′j)
}
, (
⊕

r′j) · ~r
]

where
⊕
rj = r1 ⊕ r2 ⊕ · · · ⊕ rt and (

⊕
r′j) · ~r = [(r′1 ⊕ · · · ⊕ r′t)r1, . . . , (r

′
1 ⊕ · · · ⊕ r′t)rt]. The

number of gates required is t + 7 for t + 1 AND gates and 6 additional operations. Thus, the

area/gate complexity of this AND operation is O(t). This is more efficient than Ishai’s t-private

model which has the area complexity of O(t2) [Ishai et al. (2003)]. Moreover, this computation

can be performed in O(log t) time as opposed to O(t) in the original private circuits.

6.5.2 OR operation

We define the OR operation as follows:

OR(~d1, ~d2) = [x1 ⊕
⊕

rj , ~r] OR [x2 ⊕
⊕

r′j ,
~r′]

= [((x1 ⊕
⊕

rj) · (x2 ⊕
⊕

r′j))⊕
{

(x1 ⊕
⊕

rj) · (
⊕

r′j)

}
⊕
{

(x2 ⊕
⊕

r′j) · (
⊕

rj)

}
︸ ︷︷ ︸

additional computations (6 operations)

,

(
⊕

r′j) · ~r] (6.9)

=
[
(x1 + x2)⊕

{
(
⊕

rj) · (
⊕

r′j)
}
, (
⊕

r′j) · ~r
]

An OR gate is a logic dual of an AND gate. Hence, OR operation logic also has the same

area complexity of O(t). It has the same structure as the AND operation logic except for the

additional NOT gates.

www.manaraa.com

105

6.5.3 NOT operation

The NOT operation is modeled by the following equations:

NOT (~di) = [(xi ⊕ r1 ⊕ · · · ⊕ rt)′, ~r]

= [x′i ⊕
⊕

rj , ~r]

6.5.4 The perfect secrecy

The original secret bit xi must not be revealed when the adversary probes tp ≤ t nodes in a

t-private logic circuit. The t-privacy parameter determines the bounds of probing experiments

for perfect secrecy. In Ishai’s privacy model, there is no grey zone analysis - you either have

perfect secrecy (p = 0) or you are unacceptably compromised. We develop a t-private circuit

privacy analysis consistent with our memory attack analysis. If the adversary can probe two

nodes (x1⊕
⊕
r1
j) and

⊕
r1
j in the proposed AND or OR logic circuit exactly, x1 is leaked easily.

Assuming that the adversary can access any circuit node equally likely with 100% certainty,

the probability that x1 is learned is given by the following equation:

Psucc =

(
t
2

)(
n
t

)
=
t(t− 1)t!(n− t)!

2n!

where n is the number of total nodes. Since n is much larger than t generally, Psucc is very low.

For example, when n and t are 100 and 10, respectively, Psucc is 2.6× 10−12. In order to make

Psucc close to zero, (xi ⊕
⊕
rj) · (

⊕
r′j) which consists of two terms in Eq. (6.8) or Eq. (6.9)

can be resolved into
⊕
{(xi ⊕

⊕
rj) · r′j} which consists of t terms.

The perfect secret circuit is defined as a circuit that appears like a pseudo-random num-

ber generator. There is no appreciable (poly adversary limited or whatever other restrictions

www.manaraa.com

106

Figure 6.18: An output of AND operation for the perfect secrecy

are placed on the adversary) correlation between inputs and outputs. Given any input, the

probability of any output vector should be the same. It does not depend on the input :

Pr[y|xi] = Pr[y] ∀xi.

where xi is the input and y is the output. This is the same property required of encryption

functions. For example, the traditional AND gate does not have perfect secrecy since the

output depends on inputs. AND-XOR network with a random bit has the perfect secrecy for

inputs of AND gates [Park and Tyagi (2012)]. Fig. 6.18 shows the schematic of the first bit of

the vector term in Eq. (6.8) which needs the perfect secrecy. For the perfect secrecy, additional

XOR gates and new random bits are inserted. Numbers in the logic circuit represents the

probability that the node is one. The probability that the output is one is always equal to 0.5,

does not depend on inputs. Also, the vector (
⊕
r′j) · ~r in Eq. (6.8) should be changed into

[(
⊕
r′j)rt ⊕ r′′1 , (

⊕
r′j)rt−1 ⊕ r′′1 , . . . , (

⊕
r′j)r2 ⊕ r′′dt/2e, (

⊕
r′j)r1 ⊕ r′′dt/2e] for the perfect secrecy.

This technique can also be applied to OR logic circuit for the perfect secrecy in a similar

manner. We compare the number of intermediate random bits for the perfect secrecy of three

t-private AND circuits which are Ishai’s t-private model, our earlier modified t-private model

[Park and Tyagi (2012)] and computable t-private model. Table 6.3 shows the comparison of the

number of intermediate random bits per AND/OR gate for our HOST scheme, Ishai’s t-private

www.manaraa.com

107

Table 6.3: Number of Random Bits Used for an AND Gate and for an N -gate Circuit

AND Gate Modified t-private (HOST) Ishai’s t-private Computable t-private Computable t-private - perfect secrecy

of random bits d t+1
2 e = O(t) t(t+1)

2 = O(t2) 2 d t2e
N -gate circuit Modified t-private (HOST) Ishai’s t-private Computable t-private Computable t-private - perfect secrecy

of random bits Nt Nt2 N ∗ ((t/m) + 2) N ∗ ((t/m) + d t2e+ 2)

scheme, proposed computable t-private without perfect secrecy, and proposed computable t-

private with perfect secrecy. The last two rows show the total number of random bits used

among these private schemes for a circuit with N gates.

6.6 Hardware Implementation

Table 6.4: Hardware Implementation on FPGA

t-private t-private with R.M proposed computable and t-private

keys 10 10 10

bits of a key 128 128 128

t 63 19 4

Psucc 0.14 0.135 0.016

Block RAM 1024 * 80 (35*80) + (304*8) 80*80

decoded bits per 1 clock 16 16 16

Input bits of decoder 64*16 = 1024 19+16+(19*16) = 339 80

LUTs 208 25 16

Delay(ns) 1.926 1.998 0.931

We implemented t-private memories including the random matrix method and our proposed

computable and t-private memory. We used Xilinx ISE tools for the synthesis and the target

device is Xilinx Virtex-5 FPGA (XC5VFX70T-3FF1136). Table 6.4 shows the parameters and

the number of used Block RAMs, LUTs and delay for each decoder. In case of t-private memory,

63 random bits are required for Psucc = 0.14. The stored bits of encoded keys in memory total

nk(t+ 1) = 10 ∗ 128 ∗ (63 + 1). Since the width of Block RAM in FPGA is limited to 1152 bits,

we set the width of the Block RAM to be 1024. Thus, 16 decoded bits (1024 / 64) per 1 clock

can be generated and 8 clock cycles are needed for decoding 1 key, which is the reference clock

to compare used LUTs and delays for decoders of t-private memories. Since we set the total

clock cycles for decoding a key to be 8, 35 bits which include 19 bits for random bits and 16

encoded bits of 16 secret-key bits are released from a block RAM and 304 bits (16 × 19) also

www.manaraa.com

108

are output from another block RAM for a random matrix simultaneously.

Our proposed memory scheme has lower storage needs (only 7% of t-private memory) even

though the success probability is almost 10% lower than the t-private memory. Also, the

decoder of our proposed memory has lower area and time overhead – specifically it requires

92% lower area, 51% less delay and 36% less area, 53% less delay compared to t-private memory

and t-private memory with a random matrix, respectively.

6.7 Conclusion

Side channel attacks and static inspection attacks on silicon chips have necessitated tech-

niques to make circuit implementations resistant (private) to these probes and inspections.

t-private circuits protect the privacy of the data in flight during computation. Memories (on-

chip or off-chip) however are not protected by t-private circuits.

Valamehr et al. [Valamehr et al. (2012)] introduced a few memory protection schemes.

We introduce a unified analysis framework to compare these schemes. Effectiveness metrics for

these schemes include area/gate count overhead, time overhead, number of random bits needed,

and adversary success probability per random bit. In this chapter, we specifically analyzed the

storage overhead and the success probability of t-private memories, t-private memories with

random matrix (for random bits reuse), and a hybrid private memory.

Ideally, we would like to design a private computing circuit with unified private memory.

In such a computing system, data and keys never appear in their raw form, thereby protecting

privacy of data and keys. We consider a memory scheme to be computable if the encoded

stored keys can be directly used in t-private computations.

Most of the memory schemes presented in Valamehr et al. [Valamehr et al. (2012)] are not

computable. The main new interesting technique they develop is to judiciously reuse random

bits while still limiting the adversary to low success probability. We develop a new memory

schema that is computable, and yet reuses many random bits by bringing in an arithmetic

function into encoding. We present the computable and t-private encoding method and cor-

www.manaraa.com

109

responding logic operations (AND, OR and NOT) suitable for our memory scheme. The new

private circuits are more efficient than Ishai’s t-private model (only t area overhead compared to

t2 area overhead of Ishai). We verified that our memory model has advantages in performance

(the success probability and delay) and area cost by implementing it on FPGA.

www.manaraa.com

110

CHAPTER 7. CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this thesis, the methodology to implement secure hardware design against side-channel

attacks has been proposed. Unsafe modules in the cryptographic system are searched by SCA

security metrics based on normalized standard deviation, KL divergence or mutual information.

If security metrics of any modules are out of the boundary range or threshold, the modules

are vulnerable against side-channel attacks. In order to find the boundary or threshold, secu-

rity metrics are compared with the result value of simulated side-channel attacks such as the

successful probability or the successful recognition rate. The range between 0 and allowable

successful recognition rate is mapped on the range of security metrics. In order to make more

strict boundary, various side-channel attacks using LDA, QDA, näıve Bayes classifier and SVM

are performed.

Vulnerable modules are transformed into secure modules by re-synthesizing with secure

logic styles such as SABL, WDDL or t-private logic cells. These secure logic styles are satisfied

with the secure condition based on the security metrics. Designers can select secure logic style

suitable for the hardware specification and constraints.

Memories also should be protected from physical access such as probing to reveal secret

information stored in the memory. For the protection, we develop a new computable t-private

memory schema which reuses many random bits by bringing in an arithmetic function into

encoding. The computable and t-private encoding method can be applied to combinational

logic operation. The new private circuits are more efficient than Ishai’s t-private model (only t

area overhead compared to t2 area overhead of Ishai). Consequently, the secure logic package

including secure logic styles and private memories should be required to implement secure ASIC

www.manaraa.com

111

or FPGA hardware system against SCA attacks.

7.2 Future Work

There exist several challenging problems in future work in the area of secure hardware

implementation. Our graph-based power estimation method using the renewal theory and

linear regression may be too time-consuming to estimate power of large-size digital module even

though this method is faster than SPICE simulation. For fast and reliable security testing, high

performance computing using GPU or hardware accelerators can be an alternative to solve the

problem. The graph-based algorithm can be mapped on GPU.

We do not deal with how to generate random bits in this thesis. t-private logic circuits must

require a lot of random bits for the perfect security. PUF-based random number generators

will be good choice. Also, the distribution of random bits to t-private logic circuits will be

significant issue. Ideally, refreshed random bits must be provided to every private circuits in

each clock cycle but it causes large power consumption and large area increasing. Efficient

distribution of random numbers temporally and spatially should be researched.

www.manaraa.com

112

APPENDIX A. THE ADVANCED ENCRYPTION STANDARD [FIPS

(2001)]

A.1 Algorithm

Ciper(byte in[4*Nb], byte in[4*Nb], word w[Nb*(Nr+1)])

begin

byte state[4, Nb]

state = in

AddRoundkey(state, w[0, Nb-1])

for round = 1 to Nr-1 do

SubBytes(state)

ShiftRows(state)

MixColumns(state)

AddRoundkey(state, w[round*Nb, (round+1)*Nb − 1])

end for

SubBytes(state)

ShiftRows(state)

AddRoundKey(state, w[Nr ∗Nb, (Nr + 1) ∗Nb − 1])

out = state

end

// Nr: the number of rounds, Nb : the number of columns (32-bit words) comprising the

State

Algorithm 3 Pseudo Code for AES encryption

A.1.1 SubBytes

The SubBytes step is the only non-linear transformation of the cipher. SubBytes is a

bricklayer permutation consisting of an S-box applied to the bytes of the state. Fig. A.1

illustrates the effect of the SubBytes step on the state. The S-box function should be satisfied

with the following conditions:

www.manaraa.com

113

Figure A.1: SubByte () applies the S-box to each byte of the State

1. The maximum input-out correlation amplitude must be as small as possible.

2. The maximum difference propagation probability must be as small as possible.

3. The algebraic expression of S-box in GF(28) has to be complex.

The S-box is defined as the following equations:

Sbox(a) = f(g(a))

g : a→ b = a−1 (mod x8 + x4 + x2 + x+ 1) in GF(28)

b = f(a) : affine transformation

b7

b6

b5

b4

b3

b2

b1

b0



=



1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1



×



a7

a6

a5

a4

a3

a2

a1

a0



⊕



0

1

1

0

0

0

1

1



A.1.2 ShiftRows

The ShiftRows step is a byte transposition that cyclically shifts the rows of the state over

different offsets. Row 0 is shifted over C0 bytes, row 1 over C1 bytes, row 2 over C2 bytes and

row 3 over C3 bytes, so that the byte at position j in row i moves to position (j−Ci) mod Nb.

www.manaraa.com

114

Figure A.2: ShiftRows () cyclically shifts the last three rows in the State

The shift offsets C0, C1, C2 and C3 depends on the value of Nb. Table A.1 shows shift offsets

depending on Nb. Fig. A.2 illustrates the ShiftRows transformation.

Table A.1: ShiftRows: shift offsets for different block lengths

Nb C0 C1 C2 C3

4 0 1 2 3

5 0 1 2 3

6 0 1 2 3

7 0 1 2 4

8 0 1 3 4

A.1.3 MixColumns

The MixColumns step is a bricklayer permutation operating on the state column by column.

The columns are considered as polynomials over GF(28) and multiplied modulo x4 + 1 with a

fixed polynomial a(x), given by

a(x) = {03}x3 + {01}x2 + {01}x+ {02}

Let s′(x) = a(x) · s(x) (mod x4 + 1). Then

s′0

s′1

s′2

s′3


=



02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02


×



s0

s1

s2

s3



www.manaraa.com

115

Figure A.3: MixColumns() operates on the State column-by-column

Figure A.4: AddRoundKey() XORs each column of the State with a word from the key schedule

Fig. A.3 illustrates the MixColumns transformation.

A.1.4 AddRoundKey

The key addition is denoted AddRoundKey. In this transformation, the state is modified by

combining it with a round key with the bitwise XOR operation. Each round key consists of Nb

words from the key schedule. Those Nb words are each added into the columns of the State,

such that

[S′0,c, S
′
1,c, S

′
2,c, S

′
3,c] = [S0,c, S1,c, S2,c, S3,c]⊕ [wround∗Nb+c] for 0 ≤ c < Nb.

Fig. A.4 illustrates the AddRoundKey operation.

www.manaraa.com

116

A.1.5 Key Schedule

The key schedule consists of two components: the key expansion and the round key selection.

Alg. 4 represents pseudo code for key expansion. SubWord() is a function that takes a four-byte

input word and applies the S-box to each of the four bytes to produce an output word. The

function RotWord() takes a word [a0, a1, a2, a3] as input, performs a cyclic permutation, and

returns the word [a1, a2, a3, a0]. The round constant word array, Rcon[i], contains the value

given by [xi−1, {00}, {00}, {00}], with xi−1 being powers of x (x is denoted as {02}) in the field

GF(28)).

Key Expansion(byte key[4*Nk], word w[Nb*(Nr+1)], Nk)

begin

word temp

i = 0

while i < Nk do

w[i] = word (key[4*i], key[4*i+1], key[4*i+2], key[4*i+3]

i = i + 1

end while

i = Nk

while i < Nb ∗ (Nr + 1) do

tamp = w[i-1]

if i mod Nk = 0 then

temp = SubWord(RotWord(temp)) xor Rcon[i/Nk]

else if Nk > 6 and i mod Nk = 4 then

temp = SubWord(temp)

end if

w[i] = w[i-Nk] xor temp

i = i + 1

end while

end

// Note that Nk = 4, 6 or 8 when key lengths are 128, 192 or 256 bits, repectively

Algorithm 4 Pseudo Code for Key Expansion

www.manaraa.com

117

APPENDIX B. TOOL SCRIPTS

B.1 Setup (FreePDK45)

1. Download FreePDK45 design kit

at http://www.eda.ncsu.edu/wiki/FreePDK45:Contents.

2. Make setup script.

#! / bin /bash

###

FreePDK Setup S c r i p t

3/21/2016 by Jungmin Park (jmpark00@iastate . edu)

###

Set the CDK DIR v a r i a b l e s

export CDK DIR=/usr / l o c a l / cadence / i c l o c a l /ncsu−cdk −1 . 6 . 0 . beta

Set the PDK DIR v a r i a b l e s to the root d i r e c t o r y o f the FreePDK

d i s t r i b u t i o n

export PDK DIR=$PWD/FreePDK45

Set CDSHOME to the root d i r e c t o r y o f the Cadence ICOA i n s t a l l s t i o n

export CDSHOME=$IC

i f [! −f ”$PWD/ . cdsenv ”]

then

cp / remote/ ncsu oa / l o c a l / cdssetup / cdsenv $PWD/ . cdsenv

f i

http://www.eda.ncsu.edu/wiki/FreePDK45:Contents

www.manaraa.com

118

i f [! −f ”$PWD/ . c d s i n i t ”]

then

cp $PDK DIR/ nc su ba s ek i t / cdssetup / c d s i n i t $PWD/ . c d s i n i t

f i

i f [! −f ”$PWD/ cds . l i b ”]

then

cp $PDK DIR/ nc su ba s ek i t / cdssetup / cds . l i b $PWD/ cds . l i b

f i

i f [! −f ”$PWD/ l i b . d e f s ”]

then

cp $PDK DIR/ nc s u b a s ek i t / cdssetup / l i b . d e f s $PWD/ l i b . d e f s

f i

i f [! −f ”$PWD/ . runset . c a l i b r e . drc ”]

then

cp $PDK DIR/ nc s u b a s ek i t / cdssetup / runset . c a l i b r e . drc $PWD/ . runset .

c a l i b r e . drc

f i

i f [! −f ”$PWD/ . runset . c a l i b r e . l v s ”]

then

cp $PDK DIR/ nc s u b a s ek i t / cdssetup / runset . c a l i b r e . l v s $PWD/ . runset .

c a l i b r e . l v s

f i

i f [! −f ”$PWD/ . runset . c a l i b r e . l f d ”]

then

cp $PDK DIR/ nc s u b a s ek i t / cdssetup / runset . c a l i b r e . l f d $PWD/ . runset .

c a l i b r e . l f d

www.manaraa.com

119

f i

i f [! −f ”$PWD/ . runset . c a l i b r e . pex”]

then

cp $PDK DIR/ nc s u b a s ek i t / cdssetup / runset . c a l i b r e . pex $PWD/ . runset .

c a l i b r e . pex

f i

export pre sent=$PYTHONPATH

i f [$present = ””]

then

export PYTHONPATH=$PDK DIR/ nc s u b a s ek i t / t e c h f i l e / cn i

e l s e

export PYTHONPATH=$PYTHONPATH: $PDK DIR/ nc s u ba s ek i t / t e c h f i l e / cn i

f i

export MGC CALIBRE DRC RUNSET FILE=./. runset . c a l i b r e . drc

export MGC CALIBRE LVS RUNSET FILE=./. runset . c a l i b r e . l v s

export MGC CALIBRE PEX RUNSET FILE=./. runset . c a l i b r e . pex

3. Modify cds.lib file

DEFINE analogLib $CDSHOME/ t o o l s / d f I I / e t c / c d s l i b / a r t i s t / analogLib

DEFINE US 8ths $CDSHOME/ t o o l s / d f I I / e t c / c d s l i b / s h e e t s /US 8ths

DEFINE bas i c $CDSHOME/ t o o l s / d f I I / e t c / c d s l i b / ba s i c

DEFINE cdsDefTechLib $CDSHOME/ t o o l s / d f I I / e t c / cdsDefTechLib

DEFINE NCSU TechLib FreePDK45 $PDK DIR/ nc s u ba s ek i t / l i b /

NCSU TechLib FreePDK45

DEFINE NCSU Devices FreePDK45 $PDK DIR/ nc s u ba s ek i t / l i b /

NCSU Devices FreePDK45

DEFINE NCSU Analog Part $CDK DIR/ l i b /NCSU Analog Parts

www.manaraa.com

120

DEFINE OSU $PDK DIR/ osu soc / l i b / f r e e p d k 4 5 c e l l s

4. Modify .cdsenv file

;−−

; s p e c t r e environment v a r i a b l e s

;−−

s p e c t r e . envOpts mode lF i l e s s t r i n g ”$PDK DIR/ osu soc / l i b / f i l e s /

gpdk45nm .m”

s p e c t r e . envOpts controlMode s t r i n g ” batch ”

5. Execute Cadence virtuoso.

$ source setup . sh

$ v i r t u o s o &

B.2 RTL Complier Tcl Script

###

S c r i p t f o r Cadence RTL Compiler s y n t h e s i s

Use with syn−r t l −f <r t l−s c r i p t>

###

Set the search paths to the l i b r a r i e s and the HDL f i l e s

Remember that ” .” means your cur rent d i r e c t o r y

s e t a t t r i b u t e hd l s ea r ch path { . . / f u n c t i o n a l } ;

s e t a t t r i b u t e l i b s e a r c h p a t h { . . / l i b d i r } ;

s e t a t t r i b u t e l i b r a r y [l i s t gscl45nm . l i b] ;

www.manaraa.com

121

s e t a t t r i b u t e i n f o r m a t i o n l e v e l 6 ; # See a l o t o f warnings .

s e t myFiles [l i s t v e r i l o g . v] ;

s e t basename AND2X1t1 ; # top module

s e t runname RTL;

#s e t myPeriod ps 10000

#s e t myInDelay ps 250

#s e t myOutDelay ps 250

###

below here shouldn ’ t neet to be changed

###

Analyze and Elaborate the HDL f i l e s

r ead hd l ${myFiles}

e l a b o r a t e ${basename}

Apply Const ra int s and generate c l o c k s

s e t c l o ck [d e f i n e c l o c k −per iod ${myPeriod ps} −name ${myClk} [

c l o c k p o r t s]]

e x t e r n a l d e l a y −input $myInDelay ps −c l o ck ${myClk} [f i n d / −port

p o r t s i n /∗]

e x t e r n a l d e l a y −output $myOutDelay ps −c l o ck ${myClk} [f i n d / −port

po r t s ou t /∗]

Sets t r a n s i t i o n to d e f a u l t va lue s f o r Synopsys SDC format ,

f a l l / r i s e 400 ps

dc : : s e t c l o c k t r a n s i t i o n . 4 $myClk

check that the des ign in OK so f a r

check des i gn −unreso lved

www.manaraa.com

122

r epor t t iming − l i n t

Synthes i z e the des ign to the t a r g e t l i b r a r y

s y n t h e s i z e −to mapped

Write out the r e p o r t s

r epor t t iming > ${basename} $ {runname} t iming . rep

r epor t gate s > ${basename} $ {runname} c e l l . rep

r epor t power > ${basename} $ {runname} power . rep

r epor t area > ${basename} $ {runname} a r ea . rep

Write out the s t r u c t u r a l Ver i l og and sdc f i l e s

w r i t e h d l −mapped > . . / encounter /${basename} $ {runname } . v

w r i t e s d c > . . / encounter /${basename} $ {runname } . sdc

B.3 Encounter Script

B.3.1 Configuration file (encounter.conf)

##

#

FirstEncounter Input c o n f i g u r a t i o n f i l e

#

##

Spec i f y the name o f your t o p l e v e l module

s e t my top leve l AND2X1t1

s e t RTL RTL

##

No changes r equ i r ed below

##

www.manaraa.com

123

g l o b a l env

#s e t OSU FREEPDK $env (PDK DIR) / osu soc

g l o b a l rda Input

s e t rda Input (u i n e t l i s t) $my toplevel$RTL . v

s e t rda Input (u i t i m i n g c o n f i l e) $my toplevel$RTL . sdc

s e t rda Input (u i t o p c e l l) $my top leve l

s e t rda Input (u i n e t l i s t t y p e) {Ver i l og }

s e t rda Input (u i i l m l i s t) {}

s e t rda Input (u i s e t t o p) {1}

s e t rda Input (u i c e l l l i b) {}

s e t rda Input (u i i o l i b) {}

s e t rda Input (u i a r e a i o l i b) {}

s e t rda Input (u i b l k l i b) {}

s e t rda Input (u i k b o x l i b) ””

s e t rda Input (u i t i m e l i b) ” . . / l i b d i r /gscl45nm . t l f ”

s e t rda Input (ui smodDef) {}

s e t rda Input (ui smodData) {}

s e t rda Input (u i dpath) {}

s e t rda Input (u i t e c h f i l e) {}

s e t rda Input (u i i o f i l e) ””

s e t rda Input (u i b u f f o o t p r i n t) {buf}

s e t rda Input (u i d e l a y f o o t p r i n t) {buf}

s e t rda Input (u i i n v f o o t p r i n t) { inv }

s e t rda Input (u i l e f f i l e) ” . . / l i b d i r / gscl45nm . l e f ”

s e t rda Input (u i c o r e c n t l) { aspect }

s e t rda Input (u i a s p e c t r a t i o) {1 .0}

s e t rda Input (u i c o r e u t i l) {0 .7}

s e t rda Input (u i c o r e h e i g h t) {}

s e t rda Input (u i c o r e w i d t h) {}

s e t rda Input (u i c o r e t o l e f t) {}

www.manaraa.com

124

s e t rda Input (u i c o r e t o r i g h t) {}

s e t rda Input (u i c o r e t o t o p) {}

s e t rda Input (u i co r e to bo t tom) {}

s e t rda Input (u i max i o he i gh t) {0}

s e t rda Input (u i r ow he i gh t) {}

s e t rda Input (u i i sHorTrackHa l fP i t ch) {0}

s e t rda Input (u i i sVerTrackHa l fP i t ch) {1}

s e t rda Input (u i i o O r i) {R0}

s e t rda Input (u i i s O r i g C e n t e r) {0}

s e t rda Input (u i e x c n e t) {}

s e t rda Input (u i d e l a y l i m i t) {1000}

s e t rda Input (u i n e t d e l a y) {1000.0 ps}

s e t rda Input (u i n e t l o a d) {0 .5 pf }

s e t rda Input (u i i n t r a n d e l a y) {120 .0 ps}

s e t rda Input (u i c a p t b l f i l e) {}

s e t rda Input (u i c a p s c a l e) {1 .0}

s e t rda Input (u i x c a p s c a l e) {1 .0}

s e t rda Input (u i r e s s c a l e) {1 .0}

s e t rda Input (u i s h r s c a l e) {1 .0}

s e t rda Input (u i t i m e u n i t) {none}

s e t rda Input (u i c a p u n i t) {}

s e t rda Input (u i s i g s t o r m l i b) {}

s e t rda Input (u i c d b f i l e) {}

s e t rda Input (u i e c h o f i l e) {}

s e t rda Input (u i q x t e c h f i l e) {}

s e t rda Input (u i q x l i b f i l e) {}

s e t rda Input (u i q x c o n f f i l e) {}

s e t rda Input (ui pwrnet) {vdd}

s e t rda Input (u i gndnet) {gnd}

s e t rda Input (f l i p f i r s t) {1}

s e t rda Input (double back) {1}

s e t rda Input (a s s i g n b u f f e r) {0}

www.manaraa.com

125

s e t rda Input (u i p g c o n n e c t i o n s) [l i s t \

{PIN : vdd :} \

{PIN : gnd :} \

]

s e t rda Input (PIN : vdd :) {vdd}

s e t rda Input (PIN : gnd :) {gnd}

B.3.2 tcl file (encounter.tcl)

###################################

Run the des ign through Encounter

###################################

Setup des ign and c r e a t e f l o o r p l a n

loadConf ig . / encounter . conf

#commitConfig

Create I n i t i a l F loorp lan

f l o o r p l a n −r 1 . 0 0 .85 0 0 0 0

Create Power s t r u c t u r e s

#addRing −spacing bottom 5 −w i d t h l e f t 5 −width bottom 5 −width top 5 −

spac ing top 5 −l ayer bottom metal5 −width r i gh t 5 −around core −cente r

1 − l a y e r t o p metal5 −s p a c i n g r i g h t 5 −s p a c i n g l e f t 5 − l a y e r r i g h t

metal6 − l a y e r l e f t metal6 −nets { gnd vdd }

Place standard c e l l s

amoebaPlace

Route power nets

s route −noBlockPins −noPadRings

www.manaraa.com

126

Perform t r i a l route and get i n i t i a l t iming r e s u l t s

t r i a l r o u t e

#buildTimingGraph

#setCteReport

#reportTA −nworst 10 −net > t iming . rep . 1 . p laced

Run in−p lace opt imiza t i on

to f i x setup problems

#setIPOMode −mediumEffort −fixDRC −addPortAsNeeded

#initECO . / ipo1 . txt

#f i x S e t u p V i o l a t i o n

#endECO

#buildTimingGraph

#setCteReport

#reportTA −nworst 10 −net > t iming . rep . 2 . ipo1

Run Clock Tree Synthe s i s

#createClockTreeSpec −output encounter . c t s −bufFootpr int buf −invFootpr int

inv

#spec i fyClockTree − c l k f i l e encounter . c t s

#ckSynthes i s −rgu ide c t s . rgu ide −r epor t r epo r t . c t s r p t −macromodel r epo r t .

ctsmdl − f i x a d d e d b u f f e r s

Output Resu l t s o f CTS

#t r i a l R o u t e −h i g h E f f o r t −guide c t s . rgu ide

#extractRC

#reportClockTree −postRoute −loca lSkew −r epor t skew . p o s t t r o u t e l o c a l .

c t s r p t

#reportClockTree −postRoute −r epor t r epo r t . p o s t t r o u t e . c t s r p t

Run Post−CTS Timing a n a l y s i s

#setAnalysisMode −setup −async −skew −autoDetectClockTree

www.manaraa.com

127

#buildTimingGraph

#setCteReport

#reportTA −nworst 10 −net > t iming . rep . 3 . c t s

Perform post−CTS IPO

#setIPOMode −h i g h E f f o r t −f i xDrc −addPortAsNeeded −i nc rTr ia lRoute −r e s t r u c t

−topomap

#initECO ipo2 . txt

#setExtractRCMode −d e f a u l t −assumeMetFil l

#extractRC

#f i x S e t u p V i o l a t i o n −guide c t s . rgu ide

Fix a l l remaining v i o l a t i o n s

#setExtractRCMode −d e t a i l −assumeMetFil l

#extractRC

#i f { [isDRVClean −maxTran −maxCap −maxFanout] != 1} {

#fixDRCViolation −maxTran −maxCap −maxFanout

#}

#endECO

#cleanupECO

Run Post IPO−2 t iming a n a l y s i s

#buildTimingGraph

#setCteReport

#reportTA −nworst 10 −net > t iming . rep . 4 . ipo2

Add f i l l e r c e l l s

a d d F i l l e r −c e l l FILL −p r e f i x FILL −f i l lBoundary

Connect a l l new c e l l s to VDD/GND

globalNetConnect vdd −type t i e h i

www.manaraa.com

128

globalNetConnect vdd −type pgpin −pin vdd −o v e r r i d e

globalNetConnect gnd −type t i e l o

globalNetConnect gnd −type pgpin −pin gnd −o v e r r i d e

Run g l o b a l Routing

g loba lDeta i lRoute

Get f i n a l t iming r e s u l t s

#setExtractRCMode −d e t a i l −noReduce

#extractRC

#buildTimingGraph

#setCteReport

#reportTA −nworst 10 −net > t iming . rep . 5 . f i n a l

Output GDSII

streamOut f i n a l . gds2 −mapFile . . / l i b d i r / gds2 encounter . map −s t r i p e s 1 −

un i t s 1000 −mode ALL

s a v e N e t l i s t −exc ludeLea fCe l l f i n a l . v

Output DSPF RC Data

rcout −sp f f i n a l . dspf

Run DRC and Connection checks

ver i fyGeometry

v e r i f y C o n n e c t i v i t y −type a l l

win

puts ”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗”

puts ”∗ Encounter s c r i p t f i n i s h e d ∗”

puts ”∗ ∗”

www.manaraa.com

129

puts ”∗ Resu l t s : ∗”

puts ”∗ −−−−−−−− ∗”

puts ”∗ Layout : f i n a l . gds2 ∗”

puts ”∗ N e t l i s t : f i n a l . v ∗”

puts ”∗ Timing : t iming . rep . 5 . f i n a l ∗”

puts ”∗ ∗”

puts ”∗ Type ’ ex i t ’ to qu i t ∗”

puts ”∗ ∗”

puts ”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗”

www.manaraa.com

130

BIBLIOGRAPHY

Agrawal, D. and Aggarwal, C. C. (2001). On the design and quantification of privacy preserving

data mining algorithms. In Symposium on Principles of Database Systems.

Alioto, M., Poli, M., and Rocchi, S. (2010). A general power model of differential power analysis

attacks to static logic circuits. IEEE Trans. Very Large Scale Integr. Syst., 18(5):711–724.

Alpaydin, E. (2010). Introduction to Machine Learning. The MIT Press, 2nd edition.

Basel Halak, Julian Murphy, A. Y. (2013). Power balanced circuits for leakage-power-attacks

resilient design. Cryptology ePrint Archive, Report 2013/048. http://eprint.iacr.org/.

Fei, Y., Ding, A. A., Lao, J., and Zhang, L. (2014). A statistics-based fundamental model for

side-channel attack analysis. Cryptology ePrint Archive, Report 2014/152. http://eprint.

iacr.org/.

FIPS (2001). Federal information processing standards publication (FIPS 197). Advanced

Encryption Standard (AES).

Group, T. C. (2013). Trusted Platform Module Specification and Architecture. Online at

http://www.trustedcomputinggroup.org/resources/tpm_main_specification/.

Halderman, J. A., Schoen, S. D., Heninger, N., Clarkson, W., Paul, W., Cal, J. A., Feldman,

A. J., and Felten, E. W. (2008). Least we remember: Cold boot attacks on encryption keys.

In In USENIX Security Symposium.

Ishai, Y., Sahai, A., and Wagner, D. (2003). Private circuits: Securing hardware against probing

attacks. In Advances in Cryptology - CRYPTO 2003, 23rd Annual International Cryptology

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.trustedcomputinggroup.org/resources/tpm_main_specification/

www.manaraa.com

131

Conference, Santa Barbara, California, USA, August 17-21, 2003, Proceedings, volume 2729

of Lecture Notes in Computer Science, pages 463–481. Springer.

Kocher, P., Jaffe, J., and Jun, B. (1999). Differential power analysis. In Proceedings of the

19th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO ’99,

pages 388–397. Springer-Verlag.

Leuven, K. (2011). Ls-svmlab v1.8. Online at http://www.esat.kuleuven.be/sista/

lssvmlab/.

Mac, F., Standaert, F.-X., and Quisquater, J.-J. (2007). Information theoretic evaluation of

side-channel resistant logic styles. In Paillier, P. and Verbauwhede, I., editors, CHES, volume

4727 of Lecture Notes in Computer Science, pages 427–442. Springer.

Mangard, S. (2005). Masked dual-rail pre-charge logic: Dpa-resistance without routing con-

straints. In Systems ? CHES 2005, 7th International Workshop, pages 172–186. Springer.

Mangard, S., Oswald, E., and Popp, T. (2007). Power Analysis Attacks: Revealing the Secrets of

Smart Cards (Advances in Information Security). Springer-Verlag New York, Inc., Secaucus,

NJ, USA.

Mangard, S., Pramstaller, N., and Oswald, E. (2005). Successfully attacking masked aes hard-

ware implementations. In Cryptographic Hardware and Embedded Systems - CHES 2005,

7th International Workshop, Edinburgh, UK, August 29 - September 1, 2005, Proceedings,

volume 3659 of Lecture Notes in Computer Science, pages 157–171. Springer.

Mathai, A. and Provost, S. (1992). Quadratic Forms in Random Variables. Statistics: A Series

of Textbooks and Monographs. Taylor & Francis.

Messerges, T. S. (2000). Securing the aes finalists against power analysis attacks. In Fast

Software Encryption, 7th International Workshop, FSE 2000, New York, NY, USA, April

10-12, 2000, Proceedings, Lecture Notes in Computer Science, pages 150–164. Springer.

http://www.esat.kuleuven.be/sista/lssvmlab/
http://www.esat.kuleuven.be/sista/lssvmlab/

www.manaraa.com

132

Messerges, T. S., Dabbish, E. A., Sloan, R. H., and Member, S. (2002). Examining smart-

card security under the threat of power analysis attacks. IEEE Transactions on Computers,

51:541–552.

Micali, S. and Reyzin, L. (2003). Physically observable cryptography. In TCC 2004, LNCS,

pages 278–296. Springer.

Micheli, G. D. (1994). Synthesis and Optimization of Digital Circuits. McGraw-Hill Higher

Education, 1st edition.

Mohyuddin, N., Pakbaznia, E., and Pedram, M. (2008). Probabilistic error propagation in logic

circuits using the boolean difference calculus. In Computer Design, 2008. ICCD 2008. IEEE

International Conference on, pages 7 –13.

Monteiro, J. C., Devadas, S., Ghosh, A., Keutzer, K., and White, J. K. (1997). Estimation of

average switching activity in combinational logic circuits using symbolic simulation. IEEE

Trans. on CAD of Integrated Circuits and Systems, 16(1):121–127.

Najm, F. N. (1994). A survey of power estimation techniques in vlsi circuits. IEEE Trans.

Very Large Scale Integr. Syst., 2(4):446–455.

NCSU (2011). Version 1.4 of freepdk45 kit. Online at http://www.eda.ncsu.edu/wiki/

FreePDK45:Contents.

Nelson, R. D. (1995). Probability, stochastic processes, and queueing theory - the mathematics

of computer performance modeling. Springer.

OSU (2008). Osu freepdk45 kit. Online at http://vlsiarch.ecen.okstate.edu/flow/#.

Park, J. and Tyagi, A. (2012). t-private logic synthesis on fpgas. In HOST, pages 63–68. IEEE.

Park, J. and Tyagi, A. (2014a). t-private systems: Unified private memories and computation.

In Security, Privacy, and Applied Cryptography Engineering - 4th International Conference,

SPACE 2014, Pune, India, October 18-22, 2014. Proceedings, pages 285–302.

http: //www.eda.ncsu.edu/wiki/FreePDK45:Contents
http: //www.eda.ncsu.edu/wiki/FreePDK45:Contents
http://vlsiarch.ecen.okstate.edu/flow/#

www.manaraa.com

133

Park, J. and Tyagi, A. (2014b). Towards making private circuits practical: DPA resistant

private circuits. In IEEE Computer Society Annual Symposium on VLSI, ISVLSI 2014,

Tampa, FL, USA, July 9-11, 2014, pages 528–533.

Park, J. and Tyagi, A. (2016). Security metrics for power based SCA resistant hardware

implementation. In 29th International Conference on VLSI Design and 15th International

Conference on Embedded Systems, VLSID 2016, Kolkata, India, January 4-8, 2016, pages

541–546.

Prouff, E. and Rivain, M. (2007). A generic method for secure Sbox implementation. Informa-

tion Security Applications, pages 227–244.

Quisquater, J.-J. and Samyde, D. (2001). Electromagnetic analysis (ema): Measures and

counter-measures for smart cards. In Proceedings of the International Conference on Research

in Smart Cards: Smart Card Programming and Security, E-SMART ’01, pages 200–210,

London, UK, UK. Springer-Verlag.

Reed, I. (1954). A class of multiple-error-correcting codes and the decoding scheme. Information

Theory, IRE Professional Group on, 4(4):38 –49.

S. Kullback and R. A. Leibler (1951). On Information and Sufficiency. The Annals of Mathe-

matical Statistics, 22(1):79–86.

Samyde, D., Skorobogatov, S., Anderson, R., and Quisquater, J.-J. (2002). On a new way to

read data from memory. In Proceedings of the First International IEEE Security in Storage

Workshop, SISW ’02, pages 65–, Washington, DC, USA. IEEE Computer Society.

Sasao, T. and Fujita, M., editors (1996). Representations of Discrete Functions. Kluwer

Academic Publishers, Norwell, MA, USA.

Satoh, A., Morioka, S., Takano, K., and Munetoh, S. (2001). A compact rijndael hardware

architecture with s-box optimization. In Boyd, C., editor, ASIACRYPT, volume 2248 of

Lecture Notes in Computer Science, pages 239–254. Springer.

www.manaraa.com

134

Sentovich, E., Singh, K., Lavagno, L., Moon, C., Murgai, R., Saldanha, A., Savoj, H., Stephan,

P., Brayton, R. K., and Sangiovanni-Vincentelli, A. L. (1992). Sis: A system for sequential

circuit synthesis. Technical report, EECS Department, University of California, Berkeley.

Standaert, F.-X., Malkin, T. G., and Yung, M. (2009). A unified framework for the analysis of

side-channel key recovery attacks. In Proceedings of the 28th Annual International Confer-

ence on Advances in Cryptology: The Theory and Applications of Cryptographic Techniques,

EUROCRYPT ’09, pages 443–461, Berlin, Heidelberg. Springer-Verlag.

Tiri, K., Akmal, M., and Verbauwhede, I. (2002). A dynamic and differential cmos logic with

signal independent power consumption to withstand differential power analysis on smart

cards. In Solid-State Circuits Conference, 2002. ESSCIRC 2002. Proceedings of the 28th

European, pages 403–406.

Tiri, K. and Verbauwhede, I. (2004). A logic level design methodology for a secure dpa resistant

asic or fpga implementation. In Proceedings of the Conference on Design, Automation and

Test in Europe - Volume 1, DATE ’04, pages 10246–, Washington, DC, USA. IEEE Computer

Society.

Tiri, K. and Verbauwhede, I. (2005). A VLSI Design Flow for Secure Side-Channel Attack

Resistant ICs. In Proceedings of the Conference on Design, Automation and Test in Europe

- Volume 3, DATE ’05, pages 58–63, Washington, DC, USA. IEEE Computer Society.

Tyagi, A. (2005). Energy-privacy trade-offs in vlsi computations. In Progress in Cryptology -

INDOCRYPT 2005, 6th International Conference on Cryptology in India, Bangalore, India,

December 10-12, 2005, Proceedings, volume 3797 of Lecture Notes in Computer Science, pages

361–374. Springer. A version titled Energy-Privacy-Time Tradeoffs in VLSI Computations

under revision for IEEE Trans. on Computers.

Valamehr, J., Chase, M., Kamara, S., Putnam, A., Shumow, D., Vaikuntanathan, V., and Sher-

wood, T. (2012). Inspection resistant memory: architectural support for security from phys-

ical examination. In Proceedings of the 39th Annual International Symposium on Computer

Architecture, ISCA ’12, pages 130–141, Washington, DC, USA. IEEE Computer Society.

www.manaraa.com

135

Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Springer-Verlag New York,

Inc., New York, NY, USA.

Vapnik, V. N. (1998). Statistical Learning Theory. Wiley-Interscience.

Wasserman, L. (2006). All of Nonparametric Statistics (Springer Texts in Statistics). Springer-

Verlag New York, Inc., Secaucus, NJ, USA.

Weste, N. and Harris, D. (2010). CMOS VLSI Design: A Circuits and Systems Perspective.

Addison-Wesley Publishing Company, USA, 4th edition.

	2016
	Secure hardware design against side-channel attacks
	Jungmin Park
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. INTRODUCTION
	1.1 Contribution
	1.2 Summary

	2. SIDE-CHANNEL ANALYSIS ATTACKS
	2.1 Introduction
	2.2 Differential Power Analysis (DPA) Attack
	2.3 Profiling Attacks
	2.3.1 Naïve Bayes classifier
	2.3.2 Linear discriminant analysis
	2.3.3 Quadratic discriminant analysis
	2.3.4 Support vector machine

	2.4 Side-channel Based Disassembler of AVR microcontroller
	2.4.1 Preliminary Experiments
	2.4.2 SVM

	3. SECURITY METRICS
	3.1 Introduction
	3.2 Basic Definition and Lemma
	3.3 Power Model Using Renewal Process and Linear Regression
	3.3.1 Renewal process
	3.3.2 Graph based analysis
	3.3.3 Linear regression

	3.4 SCA Security Metrics
	3.4.1 Kullback-Leibler divergence
	3.4.2 Mutual information

	3.5 Recognition Rate Using Maximum Likelihood Estimation
	3.6 Experiment
	3.7 Conclusion

	4. SECURE LOGIC STYLE
	4.1 Introduction
	4.2 Sense Amplifed Based Logic (SABL)
	4.3 Wave Dynamic Differential Logic (WDDL)
	4.4 t-private Private Circuit
	4.4.1 Ishai's t-private circuit
	4.4.2 The modified t-private circuit

	4.5 Design of Secure logic style
	4.5.1 Design of SABL-NAND
	4.5.2 Design of WDDL
	4.5.3 Design of t-private logic cells
	4.5.4 Comparison of t-private NAND, SABL-NAND and WDDL-NAND
	4.5.5 SCA attacks of t-private logic circuit

	4.6 Conclusion

	5. FPGA IMPLEMENTATION AND ASIC IMPLEMENTATION
	5.1 Introduction
	5.2 FPGA Implementation
	5.2.1 The tail recursive t-private circuit
	5.2.2 Mapping into k-LUTs with unlimited number of inputs
	5.2.3 Mapping into k-LUTs with limited number of inputs
	5.2.4 Implementation of t-private full adder

	5.3 ASIC Implementation
	5.3.1 t-private Logic synthesis
	5.3.2 Design Flow
	5.3.3 Technology Library
	5.3.4 Verification of robustness

	5.4 Example : SBOX design
	5.5 Conclusion

	6. t-PRIVATE SYSTEMS: UNIFIED PRIVATE MEMORIES AND COMPUTATION
	6.1 Introduction
	6.2 Assumptions and Notation
	6.3 t-Private Memory: Schemas, Architecture, and Analysis
	6.3.1 Original memory scheme without secrecy
	6.3.2 t-private memory scheme
	6.3.3 t-private memory scheme using a random matrix T
	6.3.4 Hybrid memory scheme
	6.3.5 Comparison

	6.4 New Approach
	6.5 New Computable And t-private Logic Schema And Gates
	6.5.1 AND operation
	6.5.2 OR operation
	6.5.3 NOT operation
	6.5.4 The perfect secrecy

	6.6 Hardware Implementation
	6.7 Conclusion

	7. CONCLUSION AND FUTURE WORK
	7.1 Conclusion
	7.2 Future Work

	A. THE ADVANCED ENCRYPTION STANDARD [FIPS-197]
	A.1 Algorithm
	A.1.1 SubBytes
	A.1.2 ShiftRows
	A.1.3 MixColumns
	A.1.4 AddRoundKey
	A.1.5 Key Schedule

	B. TOOL SCRIPTS
	B.1 Setup (FreePDK45)
	B.2 RTL Complier Tcl Script
	B.3 Encounter Script
	B.3.1 Configuration file (encounter.conf)
	B.3.2 tcl file (encounter.tcl)

	BIBLIOGRAPHY

